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Abstract

The aim of  this  study  is  to  test  SLAM algorithms  in  the
Webots simulation program and compare the performance
results  according  to  several  noise  levels  and  landmark
conditions. Simulations have carried out using a robot with
a  differential  driving  system.  The  2D lidar  sensor  on  the
robot  has  used  to  detect  obstacles  in  the  environment.
Predetermined  landmarks  placed  in  the  simulation
environment  to  enable  the  robot  to  estimate  its  position
using different SLAM algorithms. The location information
obtained with different number of landmarks has compared
and  the  results  show  that  the  position  estimation  error
increases  when  the  number  of  landmarks  decreases.
Subsequent  studies  aimed  to  increase  the  accuracy  of
location estimation by creating landmarks using the points
obtained from the Lidar sensor.

1. Introduction

A  robot  must  perform  simultaneous  localisation  and
mapping(SLAM) in order to move autonomously in an unknown
environment. The  robot needs location information to perform
mapping. Likewise, the robot needs map information in order to
perform positioning operations. As discussed by Cadena [1], this
makes the SLAM problem a complex one. 
As discussed by  Stachniss  [2], there are three different solution
methods  for  solving  the  SLAM problem.  These  methods  are
Kalman filter, particle filter and graph-based approach.  In this
study, we have used the Extended Kalman Filter (EKF) using the
Kalman  filter  method  and  the  Fast  SLAM  solution  methods
using the particle filter method.
As discussed by different works [3], [4], [5] Kalman filter (KF)
works on linear systems. But a real system is generally nonlinear.
For this reason,  the extended Kalman filter (EKF) is preferred
method.  The  EKF  algorithm  filters  the  erroneous  result  by
linearizing  non-linear  systems.  EKF  SLAM  consists  of  two
stages, which have discussed in the section 2.2.
The  particle  filter  is  an  alternative  approach  for  solving  the
SLAM problem. As shown by Murphy et all. [6], this method
uses particles that contain the pose, map and weight information
of the robot. Fast SLAM approach has developed by Montemerlo
et all. [7]. Each of the particles used in the Fast SLAM algorithm
has a Kalman filter. Each particle tries to estimate the landmark
locations using the Kalman filter.
For  a  robot  to  move  autonomously,  it  needs  to  plan  a  path.
During  path  planning,  the  robot  tries  to  arrive  at  the  target
location  while  avoiding  the obstacles around it.  In  this  study,
pathes have created to points with known locations so that the

robot  can  move  autonomously.As  shown  by  Fox  et  all.  [8]
Dynamic  windowing   approach  (DWA)  are  uses  in  the  path
planning process. In this method, vectors are created according
to  the  robot's  speed  and  angular  velocity  information.  These
vectors are evaluated based on the location of the surrounding
obstacles and the target position. The most appropriate vector is
selected as a result of the evaluation process. The velocity and
angular velocity information of the selected vector is given to the
robot as control input. The robot moves with the given control
information. This process is repeated while the robot is moving. 
Many  SLAM  algorithms  have  been  developed  today.  Each
algorithm has different advantages and disadvantages. Therefore,
there is a need to compare between algorithms in order to select
the SLAM algorithm that gives the desired result. As shown by
Kümmerle  [9]  A  method  has  developed  to  compare  SLAM
algorithms metrically.  In the method used,  the robot's  position
and angle information are evaluated simultaneously. However, in
this  study,  position  and  angle  information  have  evaluated
separately.

2. Material and Methods

In  this  section,  the  introduction  of  the  Webots  simulation
program, the structure of EKF SLAM and the structure of Fast
SALM have presented respectively.

2.1. Webots Simulation Program

A controlled environment is needed to test the algorithms used in
the SLAM problem. This makes it easier to run and develop the
SLAM problem, which is difficult to develop. Webots simulation
program has used in this study. As shown in [10], the Webots
simulation  program  can  be  used  to  The  environment  for  the
SLAM  application  can  be  created,  the  desired  robot  can  be
designed, the movement of the robot and the data received from
the  sensors  can  be  monitored  instantly,  It  facilitates  error
detection,  It  shortens  the  development  process  because  the
development  of  the  algorithm  is  done  in  a  controlled
environment.

Fig. 1. Structure of the Webots simulation program [11].



In this study, EKF SLAM and Fast SLAM algorithms have
compared  using  Webots  simulation  program.  A  robot  with  a
differential  driving  system  have  designed  in  the  simulation
program. Also an environment with corners and straight walls
have  designed.  Red  boxes  were  placed  in  the  environment
designed for SLAM algorithms to estimate the location.

Figure  2  shows  the  environment  designed  in  the  Webots
simulation  program.  The  red  boxes  represent  landmarks  with
known locations,  the white and black obstacles represent walls,
the red  cylinder represents the robot with the differential drive
ystem, the green cylinder represents the desired target location,
and the light blue circle represents the area visible to the lidar
sensor.

Fig. 2. Designed environment in Webots simulation program. 

In  this  study,  the  robot  does  not  take  into  account  the
obstacles around it when observing landmarks.  Landmarks are
set to be observable even if they are behind a wall. In this way,
as  soon  as  the landmarks enter  the field  of  view of  the lidar
sensor, they send their location information to the robot.

2.2. EKF SLAM

The EKF SLAM algorithm uses an extended Kalman filter to
filter out noise from the sensors and the environment. Unlike the
Kalman filter, the EKF can operate in nonlinear systems.In this
way, it can better solve the SLAM problem in a real situation.

The EKF SLAM algorithm basically consists of two steps.
These steps are respectively state estimation and state updating.
In the estimation stage,  the next  state is tried to be estimated
according  to  the previous  sensor  data  and  the position  of  the
robot.  In  the updating  stage,  the estimated robot  position  and
map information are compared with the actual values received
from the  sensors.  As  a  result  of  the  comparison  process,  the
Kalman gain is calculated and tries to bring the situation closer to
the real result as described in [3], [4].

The EKF SLAM algorithm does not record all past states. It
only estimates current position information and landmarks. This
SLAM structure  is  called Online  SLAM [5].The EKF SLAM
algorithm does not record all past states. It only estimates current
position  information  and  landmarks.  This  SLAM  structure  is
called Online SLAM [5]. 

As shown in Figure 3, EKF SLAM uses the Online SLAM
solution method. It estimates the current position(x) and map(m)
according to the given control signal(u) and observation(z) data.

Fig. 3. Online SLAM 

2.3. Fast SLAM

The Fast SLAM algorithm tries to solve the SLAM problem
using a particle filter. The particle filter basically consists of 4
steps. These steps are particle generation, state estimation, state
update and resampling.

As discussed [6], [7], in the Fast SLAM algorithm, particles
are randomly distributed in a certain number around the robot.
Each  particle  has  different  position,  rotation  and  map
information.  As  the  robot  moves  with  the  applied  control
information,  each particle  also moves.  As the robot  moves,  it
tries to estimate the location and map information.  The actual
position  obtained  from the  sensors  and  the  predicted  position
according to the map information are compared. If particles are
close to  the  true  value,  their  weight  increases,  while  particles
which are not close to the true value disappear over time. As the
number  of  particles  decreases,  new particles  are  generated by
resampling around the particle with the highest weight.

Fast SLAM saves all past positions. It tries to estimate the
current  position  and  map  based  on  the  past  positions.  This
SLAM structure is called full SLAM [12].

Fig. 4. Full SLAM 

Figure 4 shows a graphical representation of the full SLAM
structure. In the Full SLAM approach, it calculates the position
and  map  with  the  given  control(u)  and  observation(z)
information.  Unlike  the  online  SLAM  structure,  it  takes  into
account all past positions when calculating the current position.

As seen in Figure 4, in the Fast Slam algorithm, there is no
connection  between  landmarks(m)  since  the  landmarks  are
independent of the robot's posture [12].

3. Simulation Result

In this section, EKF SLAM and Fast SLAM algorithms will
be tested in Webots simulation program respectively. The testing
process  consists  of  4  stages.  The  first  step is  to  compare the
graphs of the robot positions obtained without adding noise to
the  control  input  and  sensors.  In  the  second  stage,  the  robot
positions obtained by adding 5% noise to the control input and
sensors  will  be  compared  with  metric  error  measurement
methods.  In  the  third  stage,  using  EKF  and  Fast  SLAM
algorithm, the process will be repeated by reducing the number
of landmarks in the case of 5% noise.  In the fourth stage, the
landmarks will be completely removed and the robot positions



estimated by the SLAM algorithms will be compared with metric
error measurement methods.

In the Webots simulation program, SLAM algorithms were
created  using  the  python  programming  language.  In  the
simulation  process,  the  duration  of  each  cycle  is  set  to  64
milliseconds. The simulation environment shown in Figure 2 is a
square  with  a  side  of  2  meters.  The  robot  used  in  this
environment has a differential drive system. The lidar sensor on
the robot has used to detect obstacles in the environment.

During the simulation, DWA was used for the robot to move
autonomously. In this method, a green cylinder is placed in the
simulation so that the robot can move to the desired locations
while avoiding the obstacles around it. This cylinder represents
the target position for DWA. When the robot reaches the target
position, the target position is automatically moved to the next
determined position. In this way, the robot moved autonomously
in the created environment.

3.1. Simulation with Noiseless Sensor Data

In  order  to  better  evaluate  the  results  of  the  SLAM
algorithms  in  the  presence  of  noise,  all  sensor  noise  in  the
simulation is set to zero in this section. 

Fig. 5. EKF SLAM(Left) and Fast SLAM(Right) with noiseless
sensor

Figures  5  show  the  location  and  map  obtained  with  the
SLAM algorithms  in  the  noiseless  case.  The light  blue  circle
represents  the  robot.  The  blue  line  shows  the  actual  robot
position  and  the  robot  position  calculated  with  the  encoder
sensor, while the red line shows the robot position estimated with
the  SLAM  algorithm.  Blue  dots  indicate  the  map  obtained
according to the real robot position, black asterisks indicate the
actual position of the landmarks in the simulation environment,
and yellow crosses indicate the landmark positions estimated by
the EKF and Fast SLAM algorithms as a result of observing the
landmarks with noise-free lidar data.

As can be seen in Figures 5, the robot position estimated by
the SLAM algorithms in a noiseless case is exactly the same as
the actual robot position.

3.2. Simulation with Noisy Sensor Data

In  this  section,  5% noise  is  applied  to  the  control  input  and
sensors. For the noisy case, EKF and Fast SLAM algorithms are
used to estimate the position of the robot.  Figures 6 show the
location  and  map obtained  with  the SLAM algorithms in  5%
noise. The robot positions obtained with EKF and Fast SLAM
have recorded during the simulation period. The simulation have
stopped when the robot traveled around the whole area prepared
in the simulation and returned to its starting position.

Fig. 6. EKF(Left) and Fast(Right) SLAM with 5% noise

When the robot returns to its initial position, the error value
obtained  by  using  all  actual  robot  positions  recorded  and  the
predicted  robot  position  is  calculated  by  metric  error
measurement methods.

MSE= 1
N Σ i=1

N (xi−X i) (1)

RMSE=√ 1
N Σ i=1

N (xi−X i )
2 (2)

MAE= 1
N

Σ i=1
N |x i−X i| (3)

MSE (Mean Squared  Error),  RMSE (Root  Mean Squared
Error) and MAE (Mean Absolute Error) values in equations (1),
(2) and (3) were calculated according to x, y and rotation values.
where xi represents the i-th measured true value, Xi represents the
i-th  predicted  value  and  N  represents  the  number  of
measurements.

Table 1. MSE values obtained from 5% noise simulation

5%
Noise

Mean squared error (MSE)

MSE_X MSE_Y MSE_ROT.

EKF
SLAM

0.00114 0.000579 0.00114

Fast
SLAM

0.00770 0.00050 0.00770

Table 2 . RMSE values obtained from 5% noise simulation

5%
Noise

Root mean squared error(RMSE)

RMSE_X RMSE_Y RMSE_ROT.

EKF
SLAM

0.03375 0.02406 0.03375

Fast
SLAM

0.08776 0.02236 0.08776

Table 3. MAE values obtained from 5% noise simulation

5%
Noise

Mean absolute error(MAE)

MAE_X MAE_Y MAE_ROT.

EKF
SLAM

0.02918 0.01796 0.02918

Fast
SLAM

0.08403 0.01717 0.08403

As  seen  in  Tables  1,  2  and  3,  each  axis  was  evaluated
separately when calculating the position error in this study. As
can be seen in the tables, the EKF SLAM algorithm gave less
inaccurate results than the Fast SLAM algorithm. Only in the y-
axis, the Fast SLAM algorithm predicts the robot position with
less error than the EKF SLAM algorithm.



3.3. Simulation with Reduced Landmark Count

At this section, 5% noise is applied to the control input and
sensors. At the same time, 2 landmarks were removed from the
simulation environment.  The selection of these two landmarks
have based on the range of the lidar sensor. Before the number of
landmarks  have  reduced,  the  lidar  sensor  could  see  up  to  5
landmarks  at  the  same  time  in  the  simulation  environment.
Similarly, when the number of landmarks is reduced, it can see at
most 3 landmarks at the same time. For the SLAM algorithm to
estimate  the  robot  position  correctly,  it  must  see  at  least  2
landmarks continuously. This number was obtained as a result of
simulations. When the 2 selected landmarks are removed from
the simulation environment,  the lidar sensor can see at least 1
landmark.

Fig. 7. Landmarks extracted in Webots simulation program
(Purple squares)

Figure  7  shows  the  landmarks  extracted  in  the  Webots
simulation program. These points have selected from the places
where the robot made the most turns. If the robot turns without
seeing enough landmarks,  there is more error in the estimated
robot position. Tables 4, 5 and 6 show the error values obtained
as a result of reducing the number of landmarks and metric error
measurement methods. In section 3.2, the position error in the y-
axis  is  calculated  less  when  the  number  of  landmarks  is  not
reduced. When the number of landmarks is decreased, the error
in the y-axis increases for  both  EKF SLAM and Fast SLAM
algorithms. The error increase in the y-axis is higher for the EKF
SLAM algorithm and lower for the Fast SLAM algorithm.

Fig 8. EKF(Left) and Fast(Right) SLAM with reduced number
of landmarks

Table 4. MSE values obtained by reducing the number of
landmarks

Reduced
Number of
Landmarks

Mean squared error (MSE)

MSE_X MSE_Y MSE_ROT

EKF SLAM 0.00106 0.00418 0.00106

Fast SLAM 0.00781 0.00103 0.00781

Table 5. RMSE values obtained by reducing the number of
landmarks

Reduced
Number of
Landmarks

Root mean squared error(RMSE)

RMSE_X RMSE_Y RMSE_ROT.

EKF
SLAM

0.03262 0.06461 0.03262

Fast SLAM 0.08839 0.03213 0.08839

Table 6. MAE values obtained by reducing the number of
landmarks

Reduced
Number of
Landmarks

Mean absolute error(MAE)

MAE_X MAE_Y MAE_ROT.

EKF SLAM 0.02627 0.05402 0.02627

Fast SLAM 0.08441 0.02168 0.08441

3.4. Simulation with all landmarks removed

To  better  understand  the  importance  of  the  number  of
landmarks in SLAM algorithms, all landmarks in the simulation
were removed.  At the same time, 5% noise was added to the
sensors. In the simulation without landmarks, the robot position
estimated by the SLAM algorithms has compared with the actual
position  information.  Metric  error  measurement  methods  have
used in the comparison process.

Fig 9. EKF(Left) and Fast(Right) SLAM with 5% noise and no
landmark

Table 7. MSE values obtained without landmark

Without
Landmark

Mean squared error (MSE)

MSE_X MSE_Y MSE_ROT.

EKF SLAM 0.04447 0.06721 0.04447

Fast SLAM 0.13314 0.11066 0.13314



Table 8. RMSE values obtained without landmark

Without
Landmark

Root mean squared error(RMSE)

RMSE_X RMSE_Y RMSE_ROT.

EKF SLAM 0.21089 0.25925 0.21089

Fast SLAM 0.36489 0.33266 0.36489

Table 9. MAE values obtained without landmark

Without
Landmark

Mean absolute error(MAE)

MAE_X MAE_Y MAE_ROT.

EKF SLAM 0.13671 0.21977 0.13671

Fast SLAM 0.25679 0.24598 0.25679

Tables  7,  8  and 9 show the position  errors  of  the SLAM
algorithms  without  using  landmarks  with  metric  error
measurement  methods.  When  the  errors  calculated  in  Section
3.3. are compared, it is seen that the error values increase. Fig. 9
show the graph of the simulation using EKF and Fast SLAM
algorithms.  The  EKF  SLAM  algorithm  estimated  the  same
position as the encoder data due to the absence of landmarks.
However,  the Fast  SLAM algorithm cannot  fully  evaluate the
encoder data because it uses a particle filter. This is because in
the particle filter, the particles need landmark information during
the resampling process.

4. Conclusion

In  this  study,  four  different  simulations  were  performed
using  EKF SLAM and Fast  SLAM algorithms in the Webots
Simulation  program.  As  a  result  of  these  simulations,  it  has
observed  that  the  errors  in  location  estimation  increased  with
decreasing the number of landmarks. However, when the noise is
reduced,  the  location  estimate  is  closer  to  the  true  value.
Simulations  have shown  that  noise  and  number  of  landmarks
significantly affect the location accuracy in SLAM algorithm

In  a  noiseless  situation,  even  if  the  SLAM  algorithms
accurately estimate the true robot position, this does not reflect
reality.  In  a  real  situation,  there  will  be  noise  from  the
environment  and  sensors.  These  noises  vary  according  to  the
quality  of  the  environment  and  the  sensor.  In  this  study,  5%
noise was added to the sensors to analyze a noisy situation. The
reason for choosing 5% noise is that the errors are more visible.

MSE, RMSE and MAE methods have used for comparison.
With these methods, the position error has calculated separately
for each axis. As a result of the simulation performed in Sections
3.2, 3.3 and 3.4, it is seen that the error in the y-axis is higher
than  the other  axes.  In  order  to  better  evaluate  this  situation,
simulations on different maps have aimed.

EKF and Fast SLAM algorithms need landmarks to estimate
the position of the robot. When landmarks are not used, SLAM
algorithms  are  not  able  to  reduce  the  accumulated  error.  The
simulation  results  show  that  Fast  SLAM  requires  more
landmarks for location estimation.

In Sections 3.2 and 3.3, a simulation process close to a real
situation has performed. In these simulations, it was seen that the
number of landmarks affects the estimated position of the robot.
Both EKF SLAM and Fast SLAM algorithms gave results close
to the true location with different  numbers  of  landmarks.  The
EKF SLAM algorithm achieved less location error with a given
number of landmarks.

In this study,  landmark extraction was not  performed with
lidar  sensor  since  the  landmarks  were  already  placed  in  the

simulation environment. Noise added during the observation of
landmarks have not applied to the lidar sensor on the robot. This
is  not  the  case  with  a  lidar  sensor  operating  in  a  real
environment. In addition, the robot moved in a partially known
environment  as  it  observed  landmarks  whose  locations  were
predetermined.  However,  SLAM  algorithms  can  also  perform
location and mapping in an unknown environment.

In future studies, it is aimed to develop a landmark extraction
algorithm using data from lidar sensor in a completely unknown
environment.  In order to develop this algorithm, noise will  be
added to the lidar sensor at a determined value within the webots
simulation program. This noise value will be based on a real lidar
sensor. In this way, the lidar sensor will produce more realistic
results in the simulation. However, the noise introduced to the
lidar sensor will also negatively affect the landmark extraction
algorithm.  Therefore,  it  is  aimed  to  develop  a  landmark
extraction algorithm that works in no landmark conditions.
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