
Performance of SLAM Algorithms According to Noise and Reduced Landmark
Parameters

Ismail Bartal1, Ahmet Özkurt2

1The Graduate School of Natural and Applied Sciences, Dokuz Eylul University, Izmir, TURKEY
ismail.bartal@ogr.deu.edu.tr

2Department of Electrical and Electronics Engineering, Dokuz Eylul University, Izmir, TURKEY
ahmet.ozkurt@deu.edu.tr

Abstract

The aim of this study is to test SLAM algorithms in the
Webots simulation program and compare the performance
results according to several noise levels and landmark
conditions. Simulations have carried out using a robot with
a differential driving system. The 2D lidar sensor on the
robot has used to detect obstacles in the environment.
Predetermined landmarks placed in the simulation
environment to enable the robot to estimate its position
using different SLAM algorithms. The location information
obtained with different number of landmarks has compared
and the results show that the position estimation error
increases when the number of landmarks decreases.
Subsequent studies aimed to increase the accuracy of
location estimation by creating landmarks using the points
obtained from the Lidar sensor.

1. Introduction

A robot must perform simultaneous localisation and
mapping(SLAM) in order to move autonomously in an unknown
environment. The robot needs location information to perform
mapping. Likewise, the robot needs map information in order to
perform positioning operations. As discussed by Cadena [1], this
makes the SLAM problem a complex one.
As discussed by Stachniss [2], there are three different solution
methods for solving the SLAM problem. These methods are
Kalman filter, particle filter and graph-based approach. In this
study, we have used the Extended Kalman Filter (EKF) using the
Kalman filter method and the Fast SLAM solution methods
using the particle filter method.
As discussed by different works [3], [4], [5] Kalman filter (KF)
works on linear systems. But a real system is generally nonlinear.
For this reason, the extended Kalman filter (EKF) is preferred
method. The EKF algorithm filters the erroneous result by
linearizing non-linear systems. EKF SLAM consists of two
stages, which have discussed in the section 2.2.
The particle filter is an alternative approach for solving the
SLAM problem. As shown by Murphy et all. [6], this method
uses particles that contain the pose, map and weight information
of the robot. Fast SLAM approach has developed by Montemerlo
et all. [7]. Each of the particles used in the Fast SLAM algorithm
has a Kalman filter. Each particle tries to estimate the landmark
locations using the Kalman filter.
For a robot to move autonomously, it needs to plan a path.
During path planning, the robot tries to arrive at the target
location while avoiding the obstacles around it. In this study,
pathes have created to points with known locations so that the

robot can move autonomously.As shown by Fox et all. [8]
Dynamic windowing approach (DWA) are uses in the path
planning process. In this method, vectors are created according
to the robot's speed and angular velocity information. These
vectors are evaluated based on the location of the surrounding
obstacles and the target position. The most appropriate vector is
selected as a result of the evaluation process. The velocity and
angular velocity information of the selected vector is given to the
robot as control input. The robot moves with the given control
information. This process is repeated while the robot is moving.
Many SLAM algorithms have been developed today. Each
algorithm has different advantages and disadvantages. Therefore,
there is a need to compare between algorithms in order to select
the SLAM algorithm that gives the desired result. As shown by
Kümmerle [9] A method has developed to compare SLAM
algorithms metrically. In the method used, the robot's position
and angle information are evaluated simultaneously. However, in
this study, position and angle information have evaluated
separately.

2. Material and Methods

In this section, the introduction of the Webots simulation
program, the structure of EKF SLAM and the structure of Fast
SALM have presented respectively.

2.1. Webots Simulation Program

A controlled environment is needed to test the algorithms used in
the SLAM problem. This makes it easier to run and develop the
SLAM problem, which is difficult to develop. Webots simulation
program has used in this study. As shown in [10], the Webots
simulation program can be used to The environment for the
SLAM application can be created, the desired robot can be
designed, the movement of the robot and the data received from
the sensors can be monitored instantly, It facilitates error
detection, It shortens the development process because the
development of the algorithm is done in a controlled
environment.

Fig. 1. Structure of the Webots simulation program [11].

In this study, EKF SLAM and Fast SLAM algorithms have
compared using Webots simulation program. A robot with a
differential driving system have designed in the simulation
program. Also an environment with corners and straight walls
have designed. Red boxes were placed in the environment
designed for SLAM algorithms to estimate the location.

Figure 2 shows the environment designed in the Webots
simulation program. The red boxes represent landmarks with
known locations, the white and black obstacles represent walls,
the red cylinder represents the robot with the differential drive
ystem, the green cylinder represents the desired target location,
and the light blue circle represents the area visible to the lidar
sensor.

Fig. 2. Designed environment in Webots simulation program.

In this study, the robot does not take into account the
obstacles around it when observing landmarks. Landmarks are
set to be observable even if they are behind a wall. In this way,
as soon as the landmarks enter the field of view of the lidar
sensor, they send their location information to the robot.

2.2. EKF SLAM

The EKF SLAM algorithm uses an extended Kalman filter to
filter out noise from the sensors and the environment. Unlike the
Kalman filter, the EKF can operate in nonlinear systems.In this
way, it can better solve the SLAM problem in a real situation.

The EKF SLAM algorithm basically consists of two steps.
These steps are respectively state estimation and state updating.
In the estimation stage, the next state is tried to be estimated
according to the previous sensor data and the position of the
robot. In the updating stage, the estimated robot position and
map information are compared with the actual values received
from the sensors. As a result of the comparison process, the
Kalman gain is calculated and tries to bring the situation closer to
the real result as described in [3], [4].

The EKF SLAM algorithm does not record all past states. It
only estimates current position information and landmarks. This
SLAM structure is called Online SLAM [5].The EKF SLAM
algorithm does not record all past states. It only estimates current
position information and landmarks. This SLAM structure is
called Online SLAM [5].

As shown in Figure 3, EKF SLAM uses the Online SLAM
solution method. It estimates the current position(x) and map(m)
according to the given control signal(u) and observation(z) data.

Fig. 3. Online SLAM

2.3. Fast SLAM

The Fast SLAM algorithm tries to solve the SLAM problem
using a particle filter. The particle filter basically consists of 4
steps. These steps are particle generation, state estimation, state
update and resampling.

As discussed [6], [7], in the Fast SLAM algorithm, particles
are randomly distributed in a certain number around the robot.
Each particle has different position, rotation and map
information. As the robot moves with the applied control
information, each particle also moves. As the robot moves, it
tries to estimate the location and map information. The actual
position obtained from the sensors and the predicted position
according to the map information are compared. If particles are
close to the true value, their weight increases, while particles
which are not close to the true value disappear over time. As the
number of particles decreases, new particles are generated by
resampling around the particle with the highest weight.

Fast SLAM saves all past positions. It tries to estimate the
current position and map based on the past positions. This
SLAM structure is called full SLAM [12].

Fig. 4. Full SLAM

Figure 4 shows a graphical representation of the full SLAM
structure. In the Full SLAM approach, it calculates the position
and map with the given control(u) and observation(z)
information. Unlike the online SLAM structure, it takes into
account all past positions when calculating the current position.

As seen in Figure 4, in the Fast Slam algorithm, there is no
connection between landmarks(m) since the landmarks are
independent of the robot's posture [12].

3. Simulation Result

In this section, EKF SLAM and Fast SLAM algorithms will
be tested in Webots simulation program respectively. The testing
process consists of 4 stages. The first step is to compare the
graphs of the robot positions obtained without adding noise to
the control input and sensors. In the second stage, the robot
positions obtained by adding 5% noise to the control input and
sensors will be compared with metric error measurement
methods. In the third stage, using EKF and Fast SLAM
algorithm, the process will be repeated by reducing the number
of landmarks in the case of 5% noise. In the fourth stage, the
landmarks will be completely removed and the robot positions

estimated by the SLAM algorithms will be compared with metric
error measurement methods.

In the Webots simulation program, SLAM algorithms were
created using the python programming language. In the
simulation process, the duration of each cycle is set to 64
milliseconds. The simulation environment shown in Figure 2 is a
square with a side of 2 meters. The robot used in this
environment has a differential drive system. The lidar sensor on
the robot has used to detect obstacles in the environment.

During the simulation, DWA was used for the robot to move
autonomously. In this method, a green cylinder is placed in the
simulation so that the robot can move to the desired locations
while avoiding the obstacles around it. This cylinder represents
the target position for DWA. When the robot reaches the target
position, the target position is automatically moved to the next
determined position. In this way, the robot moved autonomously
in the created environment.

3.1. Simulation with Noiseless Sensor Data

In order to better evaluate the results of the SLAM
algorithms in the presence of noise, all sensor noise in the
simulation is set to zero in this section.

Fig. 5. EKF SLAM(Left) and Fast SLAM(Right) with noiseless
sensor

Figures 5 show the location and map obtained with the
SLAM algorithms in the noiseless case. The light blue circle
represents the robot. The blue line shows the actual robot
position and the robot position calculated with the encoder
sensor, while the red line shows the robot position estimated with
the SLAM algorithm. Blue dots indicate the map obtained
according to the real robot position, black asterisks indicate the
actual position of the landmarks in the simulation environment,
and yellow crosses indicate the landmark positions estimated by
the EKF and Fast SLAM algorithms as a result of observing the
landmarks with noise-free lidar data.

As can be seen in Figures 5, the robot position estimated by
the SLAM algorithms in a noiseless case is exactly the same as
the actual robot position.

3.2. Simulation with Noisy Sensor Data

In this section, 5% noise is applied to the control input and
sensors. For the noisy case, EKF and Fast SLAM algorithms are
used to estimate the position of the robot. Figures 6 show the
location and map obtained with the SLAM algorithms in 5%
noise. The robot positions obtained with EKF and Fast SLAM
have recorded during the simulation period. The simulation have
stopped when the robot traveled around the whole area prepared
in the simulation and returned to its starting position.

Fig. 6. EKF(Left) and Fast(Right) SLAM with 5% noise

When the robot returns to its initial position, the error value
obtained by using all actual robot positions recorded and the
predicted robot position is calculated by metric error
measurement methods.

MSE= 1
N Σ i=1

N (xi−X i) (1)

RMSE=√ 1
N Σ i=1

N (xi−X i)
2 (2)

MAE= 1
N

Σ i=1
N |x i−X i| (3)

MSE (Mean Squared Error), RMSE (Root Mean Squared
Error) and MAE (Mean Absolute Error) values in equations (1),
(2) and (3) were calculated according to x, y and rotation values.
where xi represents the i-th measured true value, Xi represents the
i-th predicted value and N represents the number of
measurements.

Table 1. MSE values obtained from 5% noise simulation

5%
Noise

Mean squared error (MSE)

MSE_X MSE_Y MSE_ROT.

EKF
SLAM

0.00114 0.000579 0.00114

Fast
SLAM

0.00770 0.00050 0.00770

Table 2 . RMSE values obtained from 5% noise simulation

5%
Noise

Root mean squared error(RMSE)

RMSE_X RMSE_Y RMSE_ROT.

EKF
SLAM

0.03375 0.02406 0.03375

Fast
SLAM

0.08776 0.02236 0.08776

Table 3. MAE values obtained from 5% noise simulation

5%
Noise

Mean absolute error(MAE)

MAE_X MAE_Y MAE_ROT.

EKF
SLAM

0.02918 0.01796 0.02918

Fast
SLAM

0.08403 0.01717 0.08403

As seen in Tables 1, 2 and 3, each axis was evaluated
separately when calculating the position error in this study. As
can be seen in the tables, the EKF SLAM algorithm gave less
inaccurate results than the Fast SLAM algorithm. Only in the y-
axis, the Fast SLAM algorithm predicts the robot position with
less error than the EKF SLAM algorithm.

3.3. Simulation with Reduced Landmark Count

At this section, 5% noise is applied to the control input and
sensors. At the same time, 2 landmarks were removed from the
simulation environment. The selection of these two landmarks
have based on the range of the lidar sensor. Before the number of
landmarks have reduced, the lidar sensor could see up to 5
landmarks at the same time in the simulation environment.
Similarly, when the number of landmarks is reduced, it can see at
most 3 landmarks at the same time. For the SLAM algorithm to
estimate the robot position correctly, it must see at least 2
landmarks continuously. This number was obtained as a result of
simulations. When the 2 selected landmarks are removed from
the simulation environment, the lidar sensor can see at least 1
landmark.

Fig. 7. Landmarks extracted in Webots simulation program
(Purple squares)

Figure 7 shows the landmarks extracted in the Webots
simulation program. These points have selected from the places
where the robot made the most turns. If the robot turns without
seeing enough landmarks, there is more error in the estimated
robot position. Tables 4, 5 and 6 show the error values obtained
as a result of reducing the number of landmarks and metric error
measurement methods. In section 3.2, the position error in the y-
axis is calculated less when the number of landmarks is not
reduced. When the number of landmarks is decreased, the error
in the y-axis increases for both EKF SLAM and Fast SLAM
algorithms. The error increase in the y-axis is higher for the EKF
SLAM algorithm and lower for the Fast SLAM algorithm.

Fig 8. EKF(Left) and Fast(Right) SLAM with reduced number
of landmarks

Table 4. MSE values obtained by reducing the number of
landmarks

Reduced
Number of
Landmarks

Mean squared error (MSE)

MSE_X MSE_Y MSE_ROT

EKF SLAM 0.00106 0.00418 0.00106

Fast SLAM 0.00781 0.00103 0.00781

Table 5. RMSE values obtained by reducing the number of
landmarks

Reduced
Number of
Landmarks

Root mean squared error(RMSE)

RMSE_X RMSE_Y RMSE_ROT.

EKF
SLAM

0.03262 0.06461 0.03262

Fast SLAM 0.08839 0.03213 0.08839

Table 6. MAE values obtained by reducing the number of
landmarks

Reduced
Number of
Landmarks

Mean absolute error(MAE)

MAE_X MAE_Y MAE_ROT.

EKF SLAM 0.02627 0.05402 0.02627

Fast SLAM 0.08441 0.02168 0.08441

3.4. Simulation with all landmarks removed

To better understand the importance of the number of
landmarks in SLAM algorithms, all landmarks in the simulation
were removed. At the same time, 5% noise was added to the
sensors. In the simulation without landmarks, the robot position
estimated by the SLAM algorithms has compared with the actual
position information. Metric error measurement methods have
used in the comparison process.

Fig 9. EKF(Left) and Fast(Right) SLAM with 5% noise and no
landmark

Table 7. MSE values obtained without landmark

Without
Landmark

Mean squared error (MSE)

MSE_X MSE_Y MSE_ROT.

EKF SLAM 0.04447 0.06721 0.04447

Fast SLAM 0.13314 0.11066 0.13314

Table 8. RMSE values obtained without landmark

Without
Landmark

Root mean squared error(RMSE)

RMSE_X RMSE_Y RMSE_ROT.

EKF SLAM 0.21089 0.25925 0.21089

Fast SLAM 0.36489 0.33266 0.36489

Table 9. MAE values obtained without landmark

Without
Landmark

Mean absolute error(MAE)

MAE_X MAE_Y MAE_ROT.

EKF SLAM 0.13671 0.21977 0.13671

Fast SLAM 0.25679 0.24598 0.25679

Tables 7, 8 and 9 show the position errors of the SLAM
algorithms without using landmarks with metric error
measurement methods. When the errors calculated in Section
3.3. are compared, it is seen that the error values increase. Fig. 9
show the graph of the simulation using EKF and Fast SLAM
algorithms. The EKF SLAM algorithm estimated the same
position as the encoder data due to the absence of landmarks.
However, the Fast SLAM algorithm cannot fully evaluate the
encoder data because it uses a particle filter. This is because in
the particle filter, the particles need landmark information during
the resampling process.

4. Conclusion

In this study, four different simulations were performed
using EKF SLAM and Fast SLAM algorithms in the Webots
Simulation program. As a result of these simulations, it has
observed that the errors in location estimation increased with
decreasing the number of landmarks. However, when the noise is
reduced, the location estimate is closer to the true value.
Simulations have shown that noise and number of landmarks
significantly affect the location accuracy in SLAM algorithm

In a noiseless situation, even if the SLAM algorithms
accurately estimate the true robot position, this does not reflect
reality. In a real situation, there will be noise from the
environment and sensors. These noises vary according to the
quality of the environment and the sensor. In this study, 5%
noise was added to the sensors to analyze a noisy situation. The
reason for choosing 5% noise is that the errors are more visible.

MSE, RMSE and MAE methods have used for comparison.
With these methods, the position error has calculated separately
for each axis. As a result of the simulation performed in Sections
3.2, 3.3 and 3.4, it is seen that the error in the y-axis is higher
than the other axes. In order to better evaluate this situation,
simulations on different maps have aimed.

EKF and Fast SLAM algorithms need landmarks to estimate
the position of the robot. When landmarks are not used, SLAM
algorithms are not able to reduce the accumulated error. The
simulation results show that Fast SLAM requires more
landmarks for location estimation.

In Sections 3.2 and 3.3, a simulation process close to a real
situation has performed. In these simulations, it was seen that the
number of landmarks affects the estimated position of the robot.
Both EKF SLAM and Fast SLAM algorithms gave results close
to the true location with different numbers of landmarks. The
EKF SLAM algorithm achieved less location error with a given
number of landmarks.

In this study, landmark extraction was not performed with
lidar sensor since the landmarks were already placed in the

simulation environment. Noise added during the observation of
landmarks have not applied to the lidar sensor on the robot. This
is not the case with a lidar sensor operating in a real
environment. In addition, the robot moved in a partially known
environment as it observed landmarks whose locations were
predetermined. However, SLAM algorithms can also perform
location and mapping in an unknown environment.

In future studies, it is aimed to develop a landmark extraction
algorithm using data from lidar sensor in a completely unknown
environment. In order to develop this algorithm, noise will be
added to the lidar sensor at a determined value within the webots
simulation program. This noise value will be based on a real lidar
sensor. In this way, the lidar sensor will produce more realistic
results in the simulation. However, the noise introduced to the
lidar sensor will also negatively affect the landmark extraction
algorithm. Therefore, it is aimed to develop a landmark
extraction algorithm that works in no landmark conditions.

4. References

[1] C. Cadena, L. Carlone, H. Carrillo, ark, "Past, present, and future
of simultaneous localization and mapping: Toward the robust-
perception age." IEEE Transactions on robotics, Vol(32), 1309-
1332, 2016.

[2] C. Stachniss, J. J. Leonard, S. Thrun, “Chapter 46: Simultaneous
localization and mapping,” Springer Handbook of Robotics,
ISBN:978-3-319-32552-1, Springer Nature,1153–1176, 2016.

[3] S. Huang, G. Dissanayake. “Convergence and Consistency
Analysis for Extended Kalman Filter Based SLAM”, IEEE
Transactions on robotics, Vol(23), 1036-1049, 2007.

[4] S. Huang, G. Dissanayake, "Convergence analysis for extended
Kalman filter based SLAM," IEEE International Conference on
Robotics and Automation, 2006, Orlando, FL, USA, 2006.

[5] http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/
slam05-ekf-slam-4.pdf

[6] Murphy, Kevin, and Stuart Russell. "Rao-Blackwellised particle
filtering for dynamic Bayesian networks." Sequential Monte
Carlo methods in practice. ISBN: 978-1-4757-3437-9, Springer,
499-515, 2001.

[7] M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, “FastSLAM: A
Factored Solution to the Simultaneous Localization and Mapping
Problem”, In AAAI National Conference on Artificial
Intelligence, 2002.

[8] D. Fox, W. Burgard and S. Thrun, "The dynamic window
approach to collision avoidance," IEEE Robotics & Automation
Magazine, Vol(4), 23-33, 1997.

[9] R. Kümmerle, B. Steder, C. Dornhege, ark.”On measuring the
accuracy of SLAM algorithms.” Auton Robot, Vol(27), 387–407,
2009.

[10] https://cyberbotics.com/doc/guide/introduction-to-webots

[11] https://cyberbotics.com/doc/reference/index

[12] http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/
slam12-fastslam-4.pdf

http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam12-fastslam-4.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam12-fastslam-4.pdf
https://cyberbotics.com/doc/reference/index
https://cyberbotics.com/doc/guide/introduction-to-webots
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam05-ekf-slam-4.pdf
http://ais.informatik.uni-freiburg.de/teaching/ws13/mapping/pdf/slam05-ekf-slam-4.pdf

	In this study, EKF SLAM and Fast SLAM algorithms have compared using Webots simulation program. A robot with a differential driving system have designed in the simulation program. Also an environment with corners and straight walls have designed. Red boxes were placed in the environment designed for SLAM algorithms to estimate the location.
	
	Fig. 2. Designed environment in Webots simulation program.
	2.2. EKF SLAM
	2.3. Fast SLAM

	3.1. Simulation with Noiseless Sensor Data
	Figures 5 show the location and map obtained with the SLAM algorithms in the noiseless case. The light blue circle represents the robot. The blue line shows the actual robot position and the robot position calculated with the encoder sensor, while the red line shows the robot position estimated with the SLAM algorithm. Blue dots indicate the map obtained according to the real robot position, black asterisks indicate the actual position of the landmarks in the simulation environment, and yellow crosses indicate the landmark positions estimated by the EKF and Fast SLAM algorithms as a result of observing the landmarks with noise-free lidar data.
	3.2. Simulation with Noisy Sensor Data
	Table 1. MSE values obtained from 5% noise simulation
	Table 2 . RMSE values obtained from 5% noise simulation
	3.3. Simulation with Reduced Landmark Count

	
	Fig. 7. Landmarks extracted in Webots simulation program (Purple squares)
	Table 5. RMSE values obtained by reducing the number of landmarks
	3.4. Simulation with all landmarks removed

	Table 8. RMSE values obtained without landmark

