
Real Time Computer Vision Based Robotic Arm Controller with ROS and
Gazebo Simulation Environment

Egemen Aksoy*,1, Arif Dorukan Çakır*,1, Berat Alper Erol2, and Abdurrahman Gumus1

1Electrical and Electronics Engineering, İzmir Institute of Technology, Türkiye
2Computer Engineering, İzmir Institute of Technology, Türkiye

egemenaksoy35@gmail.com, arifdorukan@gmail.com, beraterol@iyte.edu.tr, abdurrahmangumus@iyte.edu.tr
*Contributed Equally

Abstract

Robotic arms are widely prevalent and find utility in a va-
riety of applications. However, a significant and widespread
challenge faced by these arms is their inability to replicate the
intricate functionalities of a human hand, primarily due to
the distinct structure of the hand. The primary objective of
this work is to create a simulation of a robotic arm that can
replicate the movements and functions of a human hand in
real-time. Data obtained from hand and arm gestures created
with Mediapipe will be transferred in real-time to the robotic
arm that is visualized and simulated on ROS and Gazebo.
Thus, the hand and arm movements of the user in front of
the camera will be effective in real-time on the manipulable
joints. This advancement holds the potential to facilitate the
construction of a robot capable of emulating both the hand
and the arm of humans with high fidelity, thereby enabling
comprehensive control over the robotic arm’s actions in real-
time.

1. Introduction

In various professions, daily work routines expose individuals
to hazards that can jeopardize their well-being. A notable ex-
ample is the field of chemistry, where certain experiments yield
toxic liquids and gasses that can harm health through inhalation
or skin contact. Similarly, precision is vital in delicate surgeries,
with even millimeters holding significance. While robots like
DaVinci are designed for surgical precision, an arm emulating
human movements and adeptly handling hand vibrations could
substantially enhance surgical outcomes [1]. Hence, the idea of
simulating a robotic arm to achieve human-like control has gained
traction. This innovation holds promise in safeguarding health
and elevating success rates in critical applications. While there
are robots and studies in these fields in the current literature, the
idea of a humanoid robot that directly mimics the human hand
and arm has not yet been realized. The aim of this project is to
simulate this robot.

There are several studies in the literature implementing a robotic
system control by interacting with a physical system such as the
human body, hand or arm [2–4]. Numerous projects in the field
employ computer vision tools for the manipulation of robotic arms;
however, these endeavors are primarily limited to executing ba-
sic predetermined instructions, such as merely opening and clos-
ing specified fingers [2]. Apart from robotic arms, works have
also been carried out in which various robots that look like au-
tonomous vehicles can be controlled using only hand gestures. In
such projects, the aim is to move the robot in 2 dimensions by

using hand movements [3,4]. However, these systems are limited
to XY coordinates while giving the control commands. In con-
trast, the implementation of this study’s control approach enables
the precise manipulation of joint positions and the emulation of
user hand movements. In this way, the simulated robotic arm is
allowed to move in three dimensions.

In this study, the goal is to simulate a robotic arm controlled by
human hand gestures. The developed system was characterized
by precise gestures beyond open-and-close movements, resulting
in an enhanced ease of manipulation suitable for a variety of ap-
plications. To develop this system, some tools such as Mediapipe
for detecting landmarks of the arm and hand using computer vi-
sion, ROS (Robot Operating System), and Gazebo for simulation
of the designed robot were used.

The remainder of the paper is organized as follows: in Sec-
tion 2, used methods are explained; in Section 3, results are given
and discussions are made; in Section 4, conclusions are given; in
Section 5, references are explained.

2. Methods

The article discusses the simulation and control of a robotic
arm within the scope of this project. The control part is fur-
ther divided into two sections as manual command-based control
and controller-based control. As seen in the flowchart in Fig. 1,
initially, simulation was conducted, followed by manual control
through commands. In the final stage, a controller was added to
enable real-time control of the robot simulation.

Fig. 1. Block diagram of the project steps

2.1. Preliminaries

To develop the system, some tools such as Mediapipe, ROS,
rospy, and Gazebo were used. Mediapipe, an open-source firmware
developed by Google, is utilized to facilitate the creation of machine-
learning solutions. Its modularity and cross-platform capabilities
allow for a swift and straightforward implementation. Multiple
operations across domains, including machine learning and im-
age processing, are consolidated within this comprehensive pack-
age. The Mediapipe firmware is employed to detect hand and
arm landmarks, with implementation carried out in Python3. Ad-
ditionally, camera image access and manipulation are facilitated
through the OpenCV library.



ROS (Robot Operating System) is an open-source middleware
framework used to build, develop and control robotic systems on
Linux [5]. It is essential for processing 3D location data obtained
from Mediapipe. The framework necessitates the installation of
specific files to achieve desired results, extending beyond the con-
fines of a single software file. Communication between ROS and
Python is enabled through the rospy library, functioning as an API
that supports data exchange and data processing, including tasks
related to sensor applications and computer vision processes.

The specifics of the robot’s design are captured through URDF
(Unified Robotics Description Format), an XML (Extensible Mar-
kup Language) format tailored for intricate robot modeling down
to the component level. To manage complexity, Xacro (XML
Macro) files streamline the description of robots, making mainte-
nance and readability more accessible. Within the realm of ROS,
the concept of the ”world” serves as the immutable foundation
upon which the robot operates. ”Links,” representing individual
components, define the robot’s shape, while ”joints” enable move-
ment, orchestrating dynamic motion sequences [6].

Gazebo, the selected simulation program running on Linux,
converts ROS-generated files into 3D simulations that accommo-
date not only robot simulations but also map design [7]. Gazebo
functions as a real-world physics simulator, utilizing physics en-
gines to significantly enhance the realism of the simulation and
the accuracy of conclusions that can be drawn in possible imple-
mentations [8]. The synthesis of these elements culminates in the
creation of an XML file for Gazebo, defining each link to instan-
tiate the robot’s presence within the simulation environment. The
simulation and computer vision-based robotic arm controller ex-
ecuted in a PC that has Intel Coffee Lake Core i7-8750H CPU,
4GB GDDR5 Nvidia GTX1050Ti 128 Bit GPU hardware. The
simulation and controller performance is around 20-30 fps and
the latency is 10ms.

2.2. Simulation

The initial phase of the project involves the creation of a sim-
ulation for the robotic arm to be controlled. Within the simula-
tion phase, there are four main files required, as illustrated in the
flowchart in Fig. 2. These files are material, definition, reference,
and launch files.

The Material file plays a pivotal role in specifying RGB color
definitions for the model, a critical aspect for ensuring visibility
within Gazebo. Without this file or complete color definitions, the
robot remains imperceptible, even when devoid of errors.

The comprehensive robot description is housed within the def-
inition file, encapsulating definitions for the world, links, and
joints. The initial step involves creating the world, which func-
tions as a fixed joint for defining the ground. Subsequently, the
construction of the robot model unfolds. The robot employed in
this project comprises 23 links, each meticulously defined with
inertial, collision, and visual attributes, characterized by their in-
dividual origins and sizes.

Additionally, the project encompasses 23 joints, including both
fixed and revolute types, facilitating the robot’s dynamic move-
ment. These joints originate from parent links and connect with
child links, equipped with attributes such as origins, adjustable
parameters like damping coefficients, and axes.

Upon the successful completion of all definitions without er-
rors, the robot model becomes fully operational within Gazebo.
However, Gazebo faces a challenge in interpreting these existing

Fig. 2. Flowchart of the simulation part involving four main files
as material, definition, reference, and launch files

definitions. To address this, a dedicated reference file tailored
specifically for Gazebo is introduced, referencing all the links
from the primary file. Furthermore, Gazebo requires the pres-
ence of a launch file, leading to the introduction of a specialized
launch file designed for Gazebo, thereby enabling the simulation
of the robot model by executing the file in the terminal.

2.3. Control

The second phase of the project involves controlling the robotic
arm that has been created in a simulation environment for control.

As seen in the flowchart in Fig. 3, there are two distinct meth-
ods of control: control with commands and control with con-
troller. In command-based control, manual data input from the
terminal is used to test the system’s ability to subscribe data to
the motor joints.

In controller-based control, data obtained using computer vi-
sion by processing hand and arm movements acquired by the cam-
era are used as input. In this section, in addition to the involved
Python code, an additional file is required for data acquisition in
Gazebo, and a launch file is needed to execute the acquired con-
trol data.

In a comprehensive and flawless simulation procedure, the ma-
nipulation of the joints can be accomplished through the panels
accessible in Gazebo. However, in order to enable control via
computer vision instead of manual manipulation, an additional
step is required. This involves designating the joints as motor
joints within the main definition file. This adjustment is essential
for granting controllability to the joints.

The definitions applied alone are insufficient for establishing
computer vision-based control in Gazebo. Unlike the simulation



Fig. 3. Flowchart of the controlling part

phase, Gazebo doesn’t inherently recognize that these joints can
be manipulated solely based on their definitions. As a solution, a
new file containing a subscriber code must be generated wherein
nodes are created within Gazebo, and these nodes are then linked
to the designated motor joints [9]. This code is also called a posi-
tion controller.

2.4. Joint Angle Calculation

The subsequent phase involves incorporating computer vision
algorithms for controlling the robotic arm and calculating the joint
angles within the project. The data obtained from Mediapipe was
initially categorized into three groups: right hand, left hand, and
pose [10, 11]. Subsequently, it was further dissected based on the
landmark numbers and their respective positional axes. Fig. 4 il-
lustrates the landmark map used as a reference during this parsing
process.

To calculate the joint angles for each particular joint, the dis-
tances between specific landmarks are computed. The algorithmic
representation of this calculation process is depicted in Algorithm
1 as a pseudo-code.

As explained in Algorithm 1, the distance between the finger-
tips and wrist landmarks is calculated to determine the desired
joint angle position data. To mitigate errors and undesired move-
ments caused by variations in the hand-arm distance from the
camera, a ratio is computed by dividing the user’s forearm length
by the calculated landmark length during each operation cycle.

Additionally, an offset is assigned based on the length results
obtained from multiple experimental tests. Subsequently, this off-
set value is amplified at a specific rate, leading to the derivation of
the desired manipulator angle values. These calculations are re-
currently performed in each cycle, exclusively when the relevant
landmarks associated with that specific movement are detected.

Fig. 4. Hand and pose landmarks

Algorithm 1 Calculate Landmark Distance and Angle

1: function CALCULATE DISTANCE(Landmark1, Landmark2)
2: lm dst← distance between points in xyz space
3: return lm dst
4: end function
5: if Landmark group is detected then
6: Calculate reference length
7: ref length← CALCULATE DISTANCE(ALM1, ALM2)
8: Calculate distance between two landmarks
9: lm distance← CALCULATE DISTANCE(LM1, LM2)

10: if both Landmark groups are detected then
11: Get the distance ratio
12: lm distance ratio← lm distance

ref length
13: Convert distance ratio to motor joint angle
14: desired angle← (offset – lm distance ratio)× Amp
15: end if
16: end if

2.5. Joint Angle Transmission

Following the calculation of joint manipulation angles for each
joint, the rospy library was utilized to transmit the computed joint
angle data to the ROS environment. This data transmission pro-
cess involves a publisher (referred as ”talker”) and a subscriber
(referred as ”listener”). In this setup, a Python script functions
as the publisher, while the ”robot-control” file serves as the sub-
scriber.

The ”robot-control” file encompasses information related to
joint IDs, motor IDs (specifically, manipulator motors), and an-
gle data. The data that is calculated and sent from the publisher
updates the angle information, consequently causing the robot to
execute movements in accordance with the updated joint angles.
The transmitter node definition is explained in Algorithm 2 as
pseudo-code format.



Algorithm 2 Define the Transmitter Node and Motor Joint Con-
trollers

1: procedure TALKER(J1, J2, ..., JN)
2: Joint1← publisher(Target/J1 contrl/command,

data type, queue size)
3: . . .
4: JointN ← publisher(Target/JN contrl/command,

data type, queue size)
5: end procedure
6: ▷ Publish the Desired Data
7: Joint1.publish(J1)
8: . . .
9: JointN.publish(JN)

Referring to Algorithm 2, the control file specifies the joint
name for that particular joint, and this information is transmitted
in the form of string data. Meanwhile, performance optimization
has been achieved by eliminating redundant operations, such as
the creation of multiple nodes during data transmission. Instead,
the data is transmitted via a single node, encompassing all nine-
teen motor joint angles within the transmitted data.

3. Results and Discussions

In the field of computer vision-based robotic control, a com-
monly employed control methodology involves detecting and ex-
ecuting simple and pre-defined motions. However, in this con-
text, achieving real-time and efficient control is needed by pro-
cessing and interpreting the gesture data obtained directly through
computer vision, rather than relying solely on pre-defined motion
sequences. In this work, a real-time robotic arm controller was
developed to resolve this problem by processing visual data ac-
quired from the human arm and hand gestures, which were then
converted into manipulator data. The developed system was able
to control the robotic arm independently in a simulation environ-
ment without any specific definitions.

In this paper, to create the robotic arm controller, it was es-
sential to design and simulate the unique anthropomorphic robot
arm. The design of the robot arm was entirely developed using
the ROS. The angle data for each motor joint of the robot has been
derived from the relative lengths obtained from landmark position
data which are acquired through Mediapipe. These length differ-
ences have been processed to obtain manipulator angle data. Sub-
sequently, these obtained manipulator angle data are published to
the ROS to control the designed robotic arm.

The computer vision-based robotic arm controller and the sim-
ulated robotic arm are used to demonstrate the capabilities of the
developed system, as depicted in Fig. 5, Fig. 6, and Fig. 7.

In Fig. 5, an open hand position is implemented using the com-
puter vision-based robotic arm controller. In Fig. 6, a more chal-
lenging operation is depicted to better reflect the project’s objec-
tives, which is to realize robotic control with more sophisticated
gestures. Fig. 7 is chosen to demonstrate that even in a fully
closed hand position, with landmarks closely aligned, no issues
were detected during the wrist rotation operation.

As a result, a humanoid robotic arm system is designed us-
ing ROS and Gazebo. This system is controlled with a real-time
robotic arm controller that replicates the hand and arm movements
of the user by processing landmark positions captured with a com-
puter vision algorithm using Mediapipe. The developed robotic

system demonstrated promising results when replicating sophisti-
cated hand gestures which is the main purpose of this project.

Fig. 5. Simulated open hand position

Fig. 6. Simulated random hand position

Fig. 7. Simulated closed hand position



4. Conclusions

In conclusion, the focus of the project was to develop a real-
time robotic arm controlled by user hand and arm gestures. This
innovation was characterized by a departure from simple open-
and-close movements, resulting in an enhanced ease of manipu-
lation suitable for a variety of applications and promises to in-
crease precision in various applications. The primary objective of
this project involved the transformation of intricate hand and arm
movements, captured by a camera, into corresponding robotic arm
actions, thereby creating a heightened sense of realism. The ini-
tial step comprised the identification of landmarks on the hand
and arm, which, in turn, facilitated the calculation of crucial joint
angle data necessary for the robotic arm’s motion.

Simultaneously, as the development of the computer-based rob-
otic arm controller progressed, a completely novel humanoid robo-
tic arm was designed. Using ROS and Gazebo, this engineered
arm was visualized and simulated. Following the simulation phase,
individual motor joints were carefully defined within the structure
of the robotic arm. Each of these joints received a dedicated node
name to enable the manipulation of its respective angle data. A
computer vision-based algorithm is used to calculate the landmark
distances and corresponding angles using Mediapipe landmarks.

The orchestrated interaction of robotic arm joints facilitated
the seamless publication of calculated joint angle data from the
computer vision-based robotic arm controller via rospy, thereby
directing the motion of the designed robotic arm. The developed
system showed promising results in different scenarios such as
open and closed hand positions, along with wrist rotation oper-
ation. This approach can make a contribution to the healthcare
sector, factories, and laboratories for several applications.

As a potential avenue for future development, this project of-
fers the possibility of refinement. Enhancements may involve op-
timizing the joint angle controller algorithm to ensure increased
precision in angle calculations, especially for complex hand and
arm gestures. Furthermore, the exploration of dual-hand control
could be implemented, allowing for the simultaneous manipula-
tion of two robotic arms, and expanding the range of potential
applications. Ultimately, the envisioned path for this project in-
cludes real-world implementation. This could entail the integra-
tion of a 3D printed chassis and the inclusion of PWM-controlled
electronic motors, which would be overseen by powerful micro-
controllers like 32-bit ARM Cortex microcontrollers. This ad-
vancement would enable further practical exploration and research,
propelling the project into new frontiers.

5. References

[1] U. Health. (2018) About the davinci sur-
gical system — uc health. [Online]. Avail-
able: https://www.uchealth.com/services/robotic-surgery/
patient-information/davinci-surgical-system/

[2] R. P. D, J. G. Sampathkumar, A. K. T, and S. R.
Senthilkumar, “Gesture based robot arm control,” NVEO
- NATURAL VOLATILES ESSENTIAL OILS Journal —
NVEO, pp. 3133–3143, Nov 2021. [Online]. Available:
https://www.nveo.org/index.php/journal/article/view/893

[3] M. Wameed and A. M. Alkamachi, “Hand gestures robotic
control based on computer vision,” International Journal of
Intelligent Systems and Applications in Engineering, vol. 11,

no. 2, pp. 1013–1021, Feb 2023. [Online]. Available:
https://ijisae.org/index.php/IJISAE/article/view/2984/1562

[4] M. Wameed, A. M. Alkamachi, and E. Erçelebi, “Tracked
robot control with hand gesture based on mediapipe,” Al-
Khwarizmi Engineering Journal, vol. 19, no. 3, pp. 56–71,
Sep 2023.

[5] ROS. (2020) Ros.org — powering the world’s robots.
[Online]. Available: https://www.ros.org/

[6] Gazebo : Tutorial : Urdf in gazebo. http://classic.gazebosim.
org/tutorials?tut=ros urdf&cat=connect ros.

[7] Gazebo : Tutorial : Installing gazebo-ros-pkgs (ros 1).
[Online]. Available: https://classic.gazebosim.org/tutorials?
tut=ros installing

[8] J. Kapukotuwa, B. Lee, D. M. Devine, and Y. Qiao, “Multi-
ros: Ros-based robot simulation environment for concurrent
deep reinforcement learning,” in 2022 IEEE 18th Interna-
tional Conference on Automation Science and Engineering
(CASE), Aug 2022.

[9] (2019) tr/ros/tutorials/python kullanılarak yayıncı (pub-
lisher) ve İzleyici (subscriber) düğümleri yazma - ros wiki.
[Online]. Available: http://wiki.ros.org/tr/ROS/Tutorials/
Python%20Kullanlarak%20Yaync%20%28Publisher%
29%20ve%20zleyici%20%28Subscriber%29%20Dmleri%
20Yazma#Publisher D.2BAPwBHwD8-m.2BAPw Yazma

[10] Hand landmark detection guide for web — mediapipe. [On-
line]. Available: https://developers.google.com/mediapipe/
solutions/vision/hand landmarker

[11] Pose landmark detection guide for web — mediapipe. [On-
line]. Available: https://developers.google.com/mediapipe/
solutions/vision/pose landmarker/web js

https://www.uchealth.com/services/robotic-surgery/patient-information/davinci-surgical-system/
https://www.uchealth.com/services/robotic-surgery/patient-information/davinci-surgical-system/
https://www.nveo.org/index.php/journal/article/view/893
https://ijisae.org/index.php/IJISAE/article/view/2984/1562
https://www.ros.org/
http://classic.gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros
http://classic.gazebosim.org/tutorials?tut=ros_urdf&cat=connect_ros
https://classic.gazebosim.org/tutorials?tut=ros_installing
https://classic.gazebosim.org/tutorials?tut=ros_installing
http://wiki.ros.org/tr/ROS/Tutorials/Python%20Kullanılarak%20Yayıncı%20%28Publisher%29%20ve%20İzleyici%20%28Subscriber%29%20Düğümleri%20Yazma#Publisher_D.2BAPwBHwD8-m.2BAPw_Yazma
http://wiki.ros.org/tr/ROS/Tutorials/Python%20Kullanılarak%20Yayıncı%20%28Publisher%29%20ve%20İzleyici%20%28Subscriber%29%20Düğümleri%20Yazma#Publisher_D.2BAPwBHwD8-m.2BAPw_Yazma
http://wiki.ros.org/tr/ROS/Tutorials/Python%20Kullanılarak%20Yayıncı%20%28Publisher%29%20ve%20İzleyici%20%28Subscriber%29%20Düğümleri%20Yazma#Publisher_D.2BAPwBHwD8-m.2BAPw_Yazma
http://wiki.ros.org/tr/ROS/Tutorials/Python%20Kullanılarak%20Yayıncı%20%28Publisher%29%20ve%20İzleyici%20%28Subscriber%29%20Düğümleri%20Yazma#Publisher_D.2BAPwBHwD8-m.2BAPw_Yazma
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/hand_landmarker
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker/web_js
https://developers.google.com/mediapipe/solutions/vision/pose_landmarker/web_js

	Introduction
	Methods
	Preliminaries
	Simulation
	Control
	Joint Angle Calculation
	Joint Angle Transmission

	Results and Discussions
	Conclusions
	References

