
GUI Component Detection Using YOLO and Faster-RCNN

Sena Nur Cavsak1, Aysu Deliahmetoglu (Intern)2, Berhan Turku Ay3 and Senem Tanberk4

1Research and Innovation, Huawei Turkey Research and Development Center, Turkey

sena.nur.cavsak@huawei.com
2Research and Innovation, Huawei Turkey Research and Development Center, Turkey

aysudeliahmetoglu@gmail.com
3Research and Innovation, Huawei Turkey Research and Development Center, Turkey

berhan.turku.ay3@huawei.com
4Research and Innovation, Huawei Turkey Research and Development Center, Turkey

senem.a.tanberk@gmail.com

Abstract

The graphical user interface (GUI) is crucial for

communicating with software users. The detection of GUI

elements holds significant importance for various software

test automation tasks. In this study, two different object

detection models such as YOLOv8 and Faster R-CNN are

used to address challenging GUI component detection

problems in mobile applications. Two different datasets were

used. The first dataset is the RICO data, which consists of 5

classes. The second dataset consists of 600 mobile application

screenshots collected from the open-source. This dataset

consists of 7 classes and has been labeled and trained on

Roboflow. In addition, an automation system was developed

to test the object detection models for errors after the version

change in the mobile application. With this test automation,

the locations of the errors in the mobile application in real-

world scenarios were determined and reported. In this

experiment, 2 different data were trained in 2 different

models, and the data we labeled gave the best result with a

mAP value of 0.81 in the YOLOv8 model.

1. Introduction

A GUI component is a fundamental building of a Graphical

User Interface, allowing users to interact with software

applications in a visual and intuitive manner. These components

are crucial to create a user-friendly interface that enables users to

input data, interact with the user interface, and get feedback from

the system [1]. GUI element components can take various forms,

such as buttons, text, header bar, edit text, text view and more.

Each component has a specific function and has qualities that may

be changed, including size and color. GUI components play an

essential role in shaping an application's overall look and feel,

enhancing usability, and guiding users to achieve their desired

tasks efficiently [2].

GUI component detection refers to identifying and

recognizing individual GUI elements within a software

application. It involves using computer vision, image processing

characteristic, and machine learning techniques to analyze the

visual layout and structure of the interface, enabling the system

to allocate components and other interactive elements [3]. This

detection is very important for some purposes such as test

automation because some common issues and challenges arise

after a new version is released to mobile apps. These issues can

often be caused by different reasons and vary depending on the

type of app, platform, and update size. Some of these issues are

security vulnerabilities, GUI component changes, performance,

and storage issues [4]. These problems can be fixed with test

automation. This method provides efficient testing methods,

facilitates repeatable action, enables rapid detection of defects,

and facilitates the engineer's job.

Object detection with the YOLO (You Look Only Once)

model plays an important role in a computer vision task that

involves the detection and localization of objects in an image [5].

In this study, Yun et al. [6] utilized the YOLO model, a deep

neural network for object detection, to identify GUI elements by

combining localization and classification techniques. Once the

GUI components were detected, the authors represented them as

hierarchical structures and converted them into suitable codes

using machine learning algorithms. Bawankule et al. [7] analyzed

the YOLOv8 model to classify household waste. This method

classifies input images into several categories of household

garbage while accurately and quickly predicting the input images.

The mAP of the model is 0.97. Altinbas et al. [8] used the

YOLOv5 model with the VINS dataset to detect GUI elements in

the UI image. The mAP value of the YOLOv5 was found to be

15.69% ahead when the results of this study were compared with

the SSD algorithm to train, validate, and test the model.

The Faster R-CNN model has played a significant role in the

field of object detection and has become one of the fundamental

building blocks in this area [9]. There are studies in the literature

on the Faster R-CNN model [10, 11]. Singh et al. [10] used

YOLO and fast R-CNN for face mask detection. A dataset of

images of people in two categories-those wearing face masks and

those not-was used to train both algorithms. They suggest a

method for drawing bounding boxes around people's faces based

on whether or not they are wearing masks and then compare the

performance of both models. In this paper, Xie et al. [11] designed

a toolkit called User Interface Element Detection. This toolkit

includes computer vision and deep learning models. In addition,

the Rico dataset used was trained with 5 models. The authors

compared all model results and UIED gave the best result.

There are many studies on detection and test automation in the

literature [8,11,18]. However, as in our project, there are not

enough studies on the coexistence of these two issues in current

studies on the GUI component. In particular, work on the GUI

components of the YOLOv8 model is limited. Additionally, the

previous works of literature were based on specific data such as

Rico. Thus, the proposed system aims to fill the gap in the

literature with both YOLOv8 and the data produced.

mailto:sena.nur.cavsak@huawei.com
mailto:aysudeliahmetoglu@gmail.com
mailto:berhan.turku.ay3@huawei.com

The contributions of this study to the literature can be listed as

follows:

1. A labeled dataset with 7 classes collected from the

internet is presented for the detection of GUI components

in mobile applications [12].

2. We conduct extensive experiments and analysis to

demonstrate the effectiveness of the proposed techniques

by training our custom-labeled dataset on both YOLOv8

and Faster R-CNN models.

3. After the update, test automation was done via the mobile

application, and the results of the errors were generated

and printed as a detection report for diagnosis to be

served on a test automation tool.

2. Method

2.1. Dataset

Custom Dataset

Our dataset consists of the mobile GUI component and is

collected from the internet. Our dataset [12] consists of 600

images and the labeling was done in Roboflow. The dataset

consists of 7 classes: Edit Text, Text View, Button, Image View,

Image Button, Header Bar, and Text Button. From the dataset,

420 (70%) images were used for training, 120 (20%) images were

used for validation and 60 (10%) images were used for testing.

Rico Dataset

The Rico dataset [13] was used in this study. The Rico dataset

includes 72k Android apps spanning 27 categories. This dataset

is labeled therefore no preprocessing is required. The Rico dataset

consists of 11 classes: Text Button, Icon, Text, Image, Video,

Checkbox, Slider, Input, Radio Button, List Item, and On/OFF

Switch. In this study, a data cleaning method was used for data

preprocessing. In this section, incorrect, corrupt, incorrectly

formatted, and incorrectly labeled data in the dataset was deleted.

Therefore, we reduced the Rico data to 5 classes (those with the

most samples) and additionally removed duplicate data because,

according to [14], Rico's annotations are noisy and sometimes

even inaccurate [15]. These classes are as follows: Text Button,

Icon, Text, Image, and Video.

Fig. 1. Labels for Rico Data Fig. 2. Labels for Our Data

As can be seen in Figure 1 and Figure 2, there are more text,

image, and button parts in both data, so there is more labeling for

them.

2.2. Models

2.2.1. YOLOv8 Model

YOLOv8 [16] is a powerful object detection algorithm

specifically designed for mobile graphic user interface (GUI)

components. It is an enhanced version of the original YOLO (You

Only Look Once) model, optimized to deliver high accuracy and

fast processing times on mobile devices. YOLOv8 is a deep

learning-based object detection model that uses Convolutional

Neural Network (CNN) architecture to identify and classify

objects in images. YOLOv8 works with a one-pass to detect and

classify objects in images, providing fast and efficient object

detection.

2.2.2. Faster R-CNN Model

Faster R-CNN [17] is a deep learning model that displays high

performance in object detection and classification tasks. The

model employs a two-stage approach, first detecting regions of

interest (ROIs) and then classifying these ROIs. For the detection

of mobile application components, the model takes screenshots or

application interfaces as input and identifies GUI components by

recognizing common elements such as buttons, text boxes, and

images. Studies demonstrate that the Faster R-CNN model

achieves high accuracy and precision in the task of mobile

application GUI detection. This method holds potential for

mobile application developers, automated testing tools, and other

applications related to GUI analysis.

2.3. Test Automation

Test automation in mobile applications is a method used to

automate the testing process of mobile applications. It automates

tests that need to be repeated manually, saving time and resources,

reducing the error rate, and improving the quality of the

application [18]. In this study, the Rico dataset and the data we

labeled are trained in YOLOV8 and Faster R-CNN models. After

this step, test automation was done. This part was made in Python

and OpenCV toolkits were used. The coordinates obtained in the

training section are used here. Thus, errors made in the

application after the update can be detected in this way.

Fig. 3. Proposed Framework

3. Experiments

In this part, we trained our labeled dataset and the Rico dataset

in both the Yolov8 model and the Faster R-CNN model. After the

detection part, we did the test automation after the mobile

application update. Finally, we compared each model and data by

mAP value as done in the literature.

3.1. Performance YOLOv8 Model

Mean Average Precision or mAP, is a metric used to evaluate

the performance of object detection models in computer vision. It

takes into account both precision and recall for multiple object

classes in an image. By calculating the average precision for each

class and then taking the mean of these values, mAP provides a

comprehensive evaluation of the model's ability to detect and

localize objects accurately at various confidence thresholds [19].

The mAP score is calculated as in Equation 1 and the mAP scores

of various models are used to compare their performance.

 𝑚𝐴𝑃 =
1

𝑁
∑ = 𝐴𝑃𝑖𝑁

𝑖=1 (1)

A detection model's performance at different levels of

confidence can be usefully assessed using precision and recall.

Finding the optimal level of confidence that balances the

precision and recall values for a given model is particularly

assisted by the F1 score. Using the following equation, the F1

score, precision, and recall may be assessed:

 Precision =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 (2)

 Recall =
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 (3)

 F-1 Score = 2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙
 (4)

The intersection over union (IoU) is the ratio that is

determined by dividing the number of pixels in the union by the

number of pixels in the intersection between a predicted object

and a ground-truth object. In this study, we calculate the IoU

between the predicted boxes and actual boxes in the labeled test

dataset and we use an IoU threshold of 0.5 [20].

3.1.1. YOLOv8 Model With Labelled Data

During the training stage of the improved YOLOv8 GUI

detection model, we set the batch size to 16, Epoch to 200, initial

learning rate to 0.0009, optimizer to Adam, and the framework is

Pytorch. Even though we set the epoch to 200, the 120th epoch

also worked best with an early stop. YOLOv8l was preferred in

YOLO models. Additionally, pre-trained was used.

Fig.4. Precision, Recall and F-1 Confidence Curve for

Our Data

According to the results of the YOLOv8 model shown in Fig.

4, as the confidence threshold increases, precision increases and

recall decreases. The confidence level that optimizes precision

and recall based on the F-1 curve is 0.406. Given that the F1 value

for this model seems to be around 0.70 and is not too distant from

the maximum value of 0.77, choosing a confidence level of 0.5 is

the best option.

The precision, recall, and mAP scores obtained by the

YOLOv8 model when used on the test dataset are shown in Fig.5.

Fig. 5. mAP, Precision, Recall values of the YOLOv8 model for

Labelled Data

A high mAP score shows that the model successfully strikes

a balance between recall and precision. The mAP scores reached
0.81 when precision is 0.79 and recall is 0.75.

After the training part, the model was tested in applications
using boxes, labels, scores and predictions were made in Fig.6.

Fig. 6. Mobile Application Example

3.1.2. YOLOv8 Model With Rico Data

In GUI detection model with Rico dataset, we set the batch

size to 16, initial learning rate to 0.001, optimizer to Adam and

the total number of epochs is 47. Here, each epoch took a very

long time and training was done with checkpoints to prevent

interruptions.

Fig. 7. Precision, Recall and F-1 Confidence Curve for Rico

Data

The maximum value in the precision-confidence and recall-

confidence graph is 1.00 and 0.83, respectively, as seen in Fig.7.

Given that this model's F1 value appears to be about 0.60 and is

close to the maximum value of 0.56.

Fig. 8. mAP, Precision, Recall values of the YOLOv8 model for

Rico Data

Fig. 8 displays the YOLOv8 model's precision, recall, and

mAP50 scores after being applied to the Rico dataset. The mAP

scores reached 0.56 when precision is 0.58 and recall is 0.55.

3.2. Performance Faster R-CNN Model

3.2.1. Faster R-CNN Model With Labelled Data

The effectiveness of the proposed Faster R-CNN model for

the detection of GUI components was assessed using a number of

measures, including mean average precision. Our labeled datasets

were used to train and test the model, and Fig. 9 displays the

results.

Fig. 9. Mobile Application Example2

After the training part, the score value was plotted. The

mAP50 value is 0.77 and the accuracy value is 0.92.

Fig. 10. MaP50 Graph Fig. 11. Accuracy Graph

3.2.2. Faster R-CNN Model With Rico Data

In this section, data was edited before training. The format of

the data has been changed. While duplicated data is deleted in the

YOLO model, it is not deleted in Faster R-CNN. That's why this

part is done manually. Our labeled data part of the Faster RCNN

model was not done in this step because the data adjustment part

was done automatically since the data was taken from Roboflow.

During the training stage of the improved Faster R-CNN

detection model, we set the batch size to 4, initial learning rate to

0.0003, optimizer to Adam, threshold to 0.5, and IoU threshold to

0.8. After the training part, the score value was plotted. The

mAP50 value is 0.47. We fine-tuned the Faster R-CNN

ResNet50 FPN model in this study.

Fig. 12. mAP50 Graph

After all training was done, mAP score was compared. In both

models, the YOLOv8 model gave the best results.

Table 1. Compare mAP50 Result (IoU > 0.5)

Dataset YOLOv8 Faster R-CNN

Rico Dataset 0.56 0.47

Our Labeled Dataset 0.81 0.77

Overall, our labelled data contains 7 classes and we used the

YOLOv8 model. Bunian et al. [21] used 12 classes in the VINS

dataset but they used the YOLOv5 model. Accordingly, It is

observed that our proposed YOLOv8 model has outperformed the

Bunian et al. [21] mAP of the model by 4.61%.

3.3. Test Automation

In this study, YOLOV8 and Faster R-CNN models are trained

using the Rico dataset and the data that we labeled. After the

training step, test automation was completed. This part is made in

Python and openCV toolkits are used. The 'x', 'y', 'width', and

'height' values in the detection section were tested according to

these coordinates. After the application update, there is a button

deficiency in Figure 13 and a button and image button shift in

Figure 14. As seen in the photos, errors were found with test

automation and an error was printed on the image with the

"cv2.putText" command.

Fig.13. Application Example1 Fig.14.Application Example2

After the test, the result was printed with the error and the

correct part. In the correct part, it gives the output "There is no

problem". In the error part, it gives information about how much

the coordinates have changed. It finds this by subtracting the first

coordinate from the last coordinate (5).

 (Xnew , Ynew) = (X2,Y2) - (X1,Y1) (5)

Fig. 11. Application report with Error 2 Result

4. Conclusion

In this article, the GUI component problem encountered after

the update in mobile applications was investigated. First, the

problem started with GUI component detection. In this part, 2

models were used for detection, these are YOLOv8 and Faster R-

CNN. Detection models were trained with 2 data separately. One

of these is Rico data, which is open source and consists of 5

classes. The other data is an open source set consisting of 7

classes and we labeled it from Roboflow. After the detection part,

the test automation part was made in Python with OpenCV

toolkits. With test automation, the problems in the application are

detected and the outputs of the problems are printed. In this study,

as a result of model comparison, YOLOv8 gives the best result in

mAP50 value with 0.81. In the future, the GUI detection problem

can be reconsidered from different perspectives by examining

new model structures. Additionally, the data we label can be

improved and integrated into different models. Finally, we will

investigate integrating our GUI component detection framework

into a visual test automation tool for mobile applications to

enhance testing efficiency.

5. References

[1] Xue, Feng, Junsheng Wu, and Tao Zhang. "Visual

Identification of Mobile App GUI Elements for Automated

Robotic Testing." Computational Intelligence and

Neuroscience 2022 (2022).

[2] Chen, Jieshan, et al. "Object detection for graphical user

interface: Old fashioned or deep learning or a

combination?." proceedings of the 28th ACM joint meeting

on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering.

2020.

[3] Jaganeshwari, K., and S. Djodilatchoumy. "an Automated

Testing Tool Based on Graphical User Interface With

Exploratory Behavioural Analysis." J. Theor. Appl. Inf.

Technol. 100.22 (2022): 6657-6666.

[4] Coppola, Riccardo, et al. "Scripted GUI testing of Android

open-source apps: evolution of test code and fragility

causes." Empirical Software Engineering 24 (2019): 3205-

3248.

[5] Diwan, Tausif, G. Anirudh, and Jitendra V. Tembhurne.

"Object detection using YOLO: Challenges, architectural

successors, datasets and applications." multimedia Tools

and Applications 82.6 (2023): 9243-9275.

[6] Yun, Young-Sun, et al. "Detection of gui elements on sketch

images using object detector based on deep neural

networks." Proceedings of the Sixth International

Conference on Green and Human Information Technology:

ICGHIT 2018. Springer Singapore, 2019.

[7] Bawankule, Ram, et al. "Visual Detection of Waste using

YOLOv8." 2023 International Conference on Sustainable

Computing and Smart Systems (ICSCSS). IEEE, 2023.

[8] Altinbas, Mehmet Dogan, and Tacha Serif. "GUI Element

Detection from Mobile UI Images Using

YOLOv5." International Conference on Mobile Web and

Intelligent Information Systems. Cham: Springer

International Publishing, 2022.

[9] Chaudhuri, Arindam. "Hierarchical modified Fast R-CNN

for object detection." Informatica 45.7 (2021).

[10] Singh, Sunil, et al. "Face mask detection using YOLOv3 and

faster R-CNN models: COVID-19

environment." Multimedia Tools and Applications 80

(2021): 19753-19768.

[11] Xie, Mulong, et al. "UIED: a hybrid tool for GUI element

detection." Proceedings of the 28th ACM Joint Meeting on

European Software Engineering Conference and

Symposium on the Foundations of Software Engineering.

2020.

[12] https://app.roboflow.com/huawei-tz75a/gui-detection-

uz7l4/2

[13] Deka, Biplab, et al. "Rico: A mobile app dataset for building

data-driven design applications." Proceedings of the 30th

annual ACM symposium on user interface software and

technology. 2017.

[14] Bunian, Sara, et al. "Vins: Visual search for mobile user

interface design." Proceedings of the 2021 CHI Conference

on Human Factors in Computing Systems. 2021.

[15] Gu, Zhangxuan, et al. "Mobile User Interface Element

Detection Via Adaptively Prompt Tuning." Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition. 2023.

[16] G. Jocher, A. Chaurasia, and J. Qiu, “YOLO by Ultralytics.”

https://github.com/ultralytics/ ultralytics, 2023. Accessed:

February 30, 2023.

[17] Ju, Rui-Yang, and Weiming Cai. "Fracture Detection in

Pediatric Wrist Trauma X-ray Images Using YOLOv8

Algorithm." arXiv preprint arXiv:2304.05071 (2023).

[18] Nam, Seong-Guk, and Yeong-Seok Seo. "GUI Component

Detection-Based Automated Software Crash

Diagnosis." Electronics 12.11 (2023): 2382.

[19] Bawankule, Ram, et al. "Visual Detection of Waste using

YOLOv8." 2023 International Conference on Sustainable

Computing and Smart Systems (ICSCSS). IEEE, 2023.

[20] White, Thomas D., Gordon Fraser, and Guy J. Brown.

"Improving random GUI testing with image-based widget

detection." Proceedings of the 28th ACM SIGSOFT

International Symposium on Software Testing and Analysis.

2019.

[21] Bunian, S., et al.: VINS: visual search for mobile user

interface design. In: Proceedings of the 2021 CHI

Conference on Human Factors in Computing Systems, pp.

1–14. ACM (2021)

