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Abstract 
 

The graphical user interface (GUI) is crucial for 

communicating with software users. The detection of GUI 

elements holds significant importance for various software 

test automation tasks. In this study, two different object 

detection models such as YOLOv8 and Faster R-CNN are 

used to address challenging GUI component detection 

problems in mobile applications. Two different datasets were 

used. The first dataset is the RICO data, which consists of 5 

classes. The second dataset consists of 600 mobile application 

screenshots collected from the open-source. This dataset 

consists of 7 classes and has been labeled and trained on 

Roboflow. In addition, an automation system was developed 

to test the object detection models for errors after the version 

change in the mobile application. With this test automation, 

the locations of the errors in the mobile application in real-

world scenarios were determined and reported. In this 

experiment, 2 different data were trained in 2 different 

models, and the data we labeled gave the best result with a 

mAP value of 0.81 in the YOLOv8 model. 
 

1. Introduction 
 

A GUI component is a fundamental building of a Graphical 

User Interface, allowing users to interact with software 

applications in a visual and intuitive manner. These components 

are crucial to create a user-friendly interface that enables users to 

input data, interact with the user interface, and get feedback from 

the system [1]. GUI element components can take various forms, 

such as buttons, text, header bar, edit text, text view and more. 

Each component has a specific function and has qualities that may 

be changed, including size and color. GUI components play an 

essential role in shaping an application's overall look and feel, 

enhancing usability, and guiding users to achieve their desired 

tasks efficiently [2]. 

GUI component detection refers to identifying and 

recognizing individual GUI elements within a software 

application. It involves using computer vision, image processing 

characteristic, and machine learning techniques to analyze the 

visual layout and structure of the interface, enabling the system 

to allocate components and other interactive elements [3]. This 

detection is very important for some purposes such as test 

automation because some common issues and challenges arise 

after a new version is released to mobile apps. These issues can 

often be caused by different reasons and vary depending on the 

type of app, platform, and update size. Some of these issues are 

security vulnerabilities, GUI component changes, performance, 

and storage issues [4]. These problems can be fixed with test 

automation. This method provides efficient testing methods, 

facilitates repeatable action, enables rapid detection of defects, 

and facilitates the engineer's job. 

Object detection with the YOLO (You Look Only Once) 

model plays an important role in a computer vision task that 

involves the detection and localization of objects in an image [5]. 

In this study, Yun et al. [6] utilized the YOLO model, a deep 

neural network for object detection, to identify GUI elements by 

combining localization and classification techniques. Once the 

GUI components were detected, the authors represented them as 

hierarchical structures and converted them into suitable codes 

using machine learning algorithms. Bawankule et al. [7] analyzed 

the YOLOv8 model to classify household waste. This method 

classifies input images into several categories of household 

garbage while accurately and quickly predicting the input images. 

The mAP of the model is 0.97. Altinbas et al. [8] used the 

YOLOv5 model with the VINS dataset to detect GUI elements in 

the UI image. The mAP value of the YOLOv5 was found to be 

15.69% ahead when the results of this study were compared with 

the SSD algorithm to train, validate, and test the model. 

The Faster R-CNN model has played a significant role in the 

field of object detection and has become one of the fundamental 

building blocks in this area [9]. There are studies in the literature 

on the Faster R-CNN model [10, 11]. Singh et al. [10] used 

YOLO and fast R-CNN for face mask detection. A dataset of 

images of people in two categories-those wearing face masks and 

those not-was used to train both algorithms. They suggest a 

method for drawing bounding boxes around people's faces based 

on whether or not they are wearing masks and then compare the 

performance of both models. In this paper, Xie et al. [11] designed 

a toolkit called User Interface Element Detection. This toolkit 

includes computer vision and deep learning models. In addition, 

the Rico dataset used was trained with 5 models. The authors 

compared all model results and UIED gave the best result. 

There are many studies on detection and test automation in the 

literature [8,11,18]. However, as in our project, there are not 

enough studies on the coexistence of these two issues in current 

studies on the GUI component. In particular, work on the GUI 

components of the YOLOv8 model is limited. Additionally, the 

previous works of literature were based on specific data such as 

Rico. Thus, the proposed system aims to fill the gap in the 

literature with both YOLOv8 and the data produced. 
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The contributions of this study to the literature can be listed as 

follows: 

1. A labeled dataset with 7 classes collected from the 

internet is presented for the detection of GUI components 

in mobile applications [12]. 

2. We conduct extensive experiments and analysis to 

demonstrate the effectiveness of the proposed techniques 

by training our custom-labeled dataset on both YOLOv8 

and Faster R-CNN models. 

3. After the update, test automation was done via the mobile 

application, and the results of the errors were generated 

and printed as a detection report for diagnosis to be 

served on a test automation tool. 

 

2. Method 

2.1. Dataset 
 

Custom Dataset 
 

Our dataset consists of the mobile GUI component and is 

collected from the internet. Our dataset [12] consists of 600 

images and the labeling was done in Roboflow. The dataset 

consists of 7 classes: Edit Text, Text View, Button, Image View, 

Image Button, Header Bar, and Text Button. From the dataset, 

420 (70%) images were used for training, 120 (20%) images were 

used for validation and 60 (10%) images were used for testing.  

 

Rico Dataset 
 

The Rico dataset [13] was used in this study. The Rico dataset 

includes 72k Android apps spanning 27 categories. This dataset 

is labeled therefore no preprocessing is required. The Rico dataset 

consists of 11 classes: Text Button, Icon, Text, Image, Video, 

Checkbox, Slider, Input, Radio Button, List Item, and On/OFF 

Switch. In this study, a data cleaning method was used for data 

preprocessing. In this section, incorrect, corrupt, incorrectly 

formatted, and incorrectly labeled data in the dataset was deleted. 

Therefore, we reduced the Rico data to 5 classes (those with the 

most samples) and additionally removed duplicate data because, 

according to [14], Rico's annotations are noisy and sometimes 

even inaccurate [15]. These classes are as follows: Text Button, 

Icon, Text, Image, and Video.  

 

       
 

Fig. 1. Labels for Rico Data      Fig. 2. Labels for Our Data 

 

As can be seen in Figure 1 and Figure 2, there are more text, 

image, and button parts in both data, so there is more labeling for 

them. 

 

2.2. Models 
 

2.2.1. YOLOv8 Model 
 

YOLOv8 [16] is a powerful object detection algorithm 

specifically designed for mobile graphic user interface (GUI) 

components. It is an enhanced version of the original YOLO (You 

Only Look Once) model, optimized to deliver high accuracy and 

fast processing times on mobile devices. YOLOv8 is a deep 

learning-based object detection model that uses Convolutional 

Neural Network (CNN) architecture to identify and classify 

objects in images. YOLOv8 works with a one-pass to detect and 

classify objects in images, providing fast and efficient object 

detection. 

 

2.2.2. Faster R-CNN Model 
 

Faster R-CNN [17] is a deep learning model that displays high 

performance in object detection and classification tasks. The 

model employs a two-stage approach, first detecting regions of 

interest (ROIs) and then classifying these ROIs. For the detection 

of mobile application components, the model takes screenshots or 

application interfaces as input and identifies GUI components by 

recognizing common elements such as buttons, text boxes, and 

images. Studies demonstrate that the Faster R-CNN model 

achieves high accuracy and precision in the task of mobile 

application GUI detection. This method holds potential for 

mobile application developers, automated testing tools, and other 

applications related to GUI analysis. 

 

2.3. Test Automation 
 

Test automation in mobile applications is a method used to 

automate the testing process of mobile applications. It automates 

tests that need to be repeated manually, saving time and resources, 

reducing the error rate, and improving the quality of the 

application [18]. In this study, the Rico dataset and the data we 

labeled are trained in YOLOV8 and Faster R-CNN models. After 

this step, test automation was done. This part was made in Python 

and OpenCV toolkits were used. The coordinates obtained in the 

training section are used here. Thus, errors made in the 

application after the update can be detected in this way.  
 

 
 

Fig. 3. Proposed Framework 

 

3. Experiments 
 

In this part, we trained our labeled dataset and the Rico dataset 

in both the Yolov8 model and the Faster R-CNN model. After the 

detection part, we did the test automation after the mobile 

application update. Finally, we compared each model and data by 

mAP value as done in the literature. 

 

3.1. Performance YOLOv8 Model 
 

Mean Average Precision or mAP, is a metric used to evaluate 

the performance of object detection models in computer vision. It 



takes into account both precision and recall for multiple object 

classes in an image. By calculating the average precision for each 

class and then taking the mean of these values, mAP provides a 

comprehensive evaluation of the model's ability to detect and 

localize objects accurately at various confidence thresholds [19]. 

The mAP score is calculated as in Equation 1 and the mAP scores 

of various models are used to compare their performance.  

 

                           𝑚𝐴𝑃 =  
1

𝑁
∑ = 𝐴𝑃𝑖𝑁

𝑖=1                                 (1) 

 

A detection model's performance at different levels of 

confidence can be usefully assessed using precision and recall. 

Finding the optimal level of confidence that balances the 

precision and recall values for a given model is particularly 

assisted by the F1 score. Using the following equation, the F1 

score, precision, and recall may be assessed: 

 

        Precision =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
                            (2) 

 

           Recall =   
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
                             (3) 

 

         F-1 Score =   2 .  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 .  𝑅𝑒𝑐𝑎𝑙𝑙  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑐𝑎𝑙𝑙 
                                    (4) 

 

The intersection over union (IoU) is the ratio that is 

determined by dividing the number of pixels in the union by the 

number of pixels in the intersection between a predicted object 

and a ground-truth object. In this study, we calculate the IoU 

between the predicted boxes and actual boxes in the labeled test 

dataset and we use an IoU threshold of 0.5 [20]. 

 

3.1.1. YOLOv8 Model With Labelled Data 
 

During the training stage of the improved YOLOv8 GUI 

detection model, we set the batch size to 16, Epoch to 200, initial 

learning rate to 0.0009, optimizer to Adam, and the framework is 

Pytorch.  Even though we set the epoch to 200, the 120th epoch 

also worked best with an early stop. YOLOv8l was preferred in 

YOLO models. Additionally, pre-trained was used. 

 

 
 

Fig.4. Precision, Recall and F-1 Confidence Curve for 

Our Data 
 

According to the results of the YOLOv8 model shown in Fig. 

4, as the confidence threshold increases, precision increases and 

recall decreases. The confidence level that optimizes precision 

and recall based on the F-1 curve is 0.406. Given that the F1 value 

for this model seems to be around 0.70 and is not too distant from 

the maximum value of 0.77, choosing a confidence level of 0.5 is 

the best option. 
 

The precision, recall, and mAP scores obtained by the 

YOLOv8 model when used on the test dataset are shown in Fig.5. 

 

Fig. 5. mAP, Precision, Recall values of the YOLOv8 model for 

Labelled Data 

 
A high mAP score shows that the model successfully strikes 

a balance between recall and precision. The mAP scores reached 
0.81 when precision is 0.79 and recall is 0.75. 

After the training part, the model was tested in applications 
using boxes, labels, scores and predictions were made in Fig.6.  

 

 

 

 

 

 

 

 

 

Fig. 6. Mobile Application Example 

 

3.1.2. YOLOv8 Model With Rico Data 
 

In GUI detection model with Rico dataset, we set the batch 

size to 16, initial learning rate to 0.001, optimizer to Adam and 

the total number of epochs is 47. Here, each epoch took a very 

long time and training was done with checkpoints to prevent 

interruptions. 

 

 
 

Fig. 7. Precision, Recall and F-1 Confidence Curve for Rico 

Data 
 

The maximum value in the precision-confidence and recall-

confidence graph is 1.00 and 0.83, respectively, as seen in Fig.7. 

Given that this model's F1 value appears to be about 0.60 and is 

close to the maximum value of 0.56. 

 



Fig. 8. mAP, Precision, Recall values of the YOLOv8 model for 

Rico Data 

 

Fig. 8 displays the YOLOv8 model's precision, recall, and 

mAP50 scores after being applied to the Rico dataset. The mAP 

scores reached 0.56 when precision is 0.58 and recall is 0.55. 

 

3.2. Performance Faster R-CNN Model 
 

3.2.1. Faster R-CNN Model With Labelled Data 
 

The effectiveness of the proposed Faster R-CNN model for 

the detection of GUI components was assessed using a number of 

measures, including mean average precision. Our labeled datasets 

were used to train and test the model, and Fig. 9 displays the 

results. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Mobile Application Example2 

 

After the training part, the score value was plotted. The 

mAP50 value is 0.77 and the accuracy value is 0.92.  

 

 
 

Fig. 10. MaP50 Graph                Fig. 11. Accuracy Graph 

 

3.2.2. Faster R-CNN Model With Rico Data 
 

In this section, data was edited before training. The format of 

the data has been changed. While duplicated data is deleted in the 

YOLO model, it is not deleted in Faster R-CNN. That's why this 

part is done manually. Our labeled data part of the Faster RCNN 

model was not done in this step because the data adjustment part 

was done automatically since the data was taken from Roboflow. 

 

During the training stage of the improved Faster R-CNN 

detection model, we set the batch size to 4, initial learning rate to 

0.0003, optimizer to Adam, threshold to 0.5, and IoU threshold to 

0.8. After the training part, the score value was plotted. The 

mAP50 value is 0.47. We fine-tuned the Faster R-CNN 

ResNet50 FPN model in this study. 
 

 
 

Fig. 12. mAP50 Graph 

 

After all training was done, mAP score was compared. In both 

models, the YOLOv8 model gave the best results.  

 

Table 1. Compare mAP50 Result (IoU > 0.5) 
 

Dataset YOLOv8 Faster R-CNN 

Rico Dataset 0.56 0.47 

Our Labeled Dataset 0.81 0.77 

 

Overall, our labelled data contains 7 classes and we used the 

YOLOv8 model. Bunian et al. [21] used 12 classes in the VINS 

dataset but they used the YOLOv5 model.  Accordingly, It is 

observed that our proposed YOLOv8 model has outperformed the 

Bunian et al. [21] mAP of the model by 4.61%. 

 

3.3. Test Automation 
 

In this study, YOLOV8 and Faster R-CNN models are trained 

using the Rico dataset and the data that we labeled. After the 

training step, test automation was completed. This part is made in 

Python and openCV toolkits are used. The 'x', 'y', 'width', and 

'height' values in the detection section were tested according to 

these coordinates. After the application update, there is a button 

deficiency in Figure 13 and a button and image button shift in 

Figure 14. As seen in the photos, errors were found with test 

automation and an error was printed on the image with the 

"cv2.putText" command. 
 

         
 

Fig.13. Application Example1  Fig.14.Application Example2  

 

After the test, the result was printed with the error and the 

correct part. In the correct part, it gives the output "There is no 

problem". In the error part, it gives information about how much 



the coordinates have changed. It finds this by subtracting the first 

coordinate from the last coordinate (5). 

 

                   (Xnew  , Ynew) = (X2,Y2) - (X1,Y1)                         (5) 
 

 
 

Fig. 11. Application report with Error 2 Result 

 

4. Conclusion 
 

In this article, the GUI component problem encountered after 

the update in mobile applications was investigated. First, the 

problem started with GUI component detection. In this part, 2 

models were used for detection, these are YOLOv8 and Faster R-

CNN. Detection models were trained with 2 data separately. One 

of these is Rico data, which is open source and consists of 5 

classes. The other data is an open source set consisting of 7 

classes and we labeled it from Roboflow. After the detection part, 

the test automation part was made in Python with OpenCV 

toolkits. With test automation, the problems in the application are 

detected and the outputs of the problems are printed. In this study, 

as a result of model comparison, YOLOv8 gives the best result in 

mAP50 value with 0.81. In the future, the GUI detection problem 

can be reconsidered from different perspectives by examining 

new model structures. Additionally, the data we label can be 

improved and integrated into different models. Finally, we will 

investigate integrating our GUI component detection framework 

into a visual test automation tool for mobile applications to 

enhance testing efficiency. 
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