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Abstract 
 

The growing environmental concerns and the increase in oil 

prices will lead to the proliferation of electric vehicles (EVs) 

in the near future. The increase in the number of EVs, while 

providing green and inexpensive solutions to transportation 

needs, may cause constraints on the operation of the utility 

grid that should be investigated. In this paper, the real user 

driving information is collected from individual data 

tracking devices of passenger vehicle owners instead of 

assuming randomly distributed trip characteristics. The 

collected trip data are first analyzed to generate a statistical 

model of the trip characteristics in terms of home arrival 

times and state of charge (SOC) levels. The resulting model 

is then used to simulate and analyze the impact of EV 

integration in a real grid with different EV penetration 

levels. For this, real distribution transformer data provided 

by Başkent Electric Distribution Co. is used. The proposed 

method produces more realistic results in comparison to the 

studies assuming random scenarios. 

 

1. Introduction 
 

The growing environmental concerns and the increase in oil 

prices will lead to a significant replacement of traditional 

vehicles with the electric vehicles (EVs) in the near future. 

Worldwide annual sales of EVs are expected to increase from 

2.7 million in 2014 to 6.4 million in 2023 [1]. The ratio of the 

EV penetration to that of traditional vehicles is also expected to 

be more in the developed countries. In [2], it is estimated that 

25% of all automobile sales in the U.S. will be EVs in 2030. In 

Canada, more than 500.000 EVs are expected to be on the road 

by 2018 [3]. In this paper, the term EV is used to include battery 

electric vehicles and plug-in hybrid electric vehicles. It stands 

for all electric-drive vehicles that can be connected to the utility 

grid. So, the term EV is used instead of plug-in electric vehicle 

(PEV) for brevity.     

While providing green and inexpensive solutions to 

transportation needs, increasing number of EVs may cause 

constraints on the operation of the grid. Since a large amount of 

electrical energy is consumed during the charging of EVs, this 

demand can lead to extra and undesirable peaks in the electric 

energy consumption. It is claimed in [4] that the electrical 

energy consumed to charge the EVs will be 5% of the total 

consumption in Belgium by 2030. With increasing EV adoption 

and new policies result in grid integration issues in countries 

such as Malaysia and Thailand [5, 6]. Thus, it is important to 

investigate the effects of integrating a large number of EVs into 

the grid. In order to ensure supply reliability in Turkey also, 

distribution companies (DisCos) are continuously revising their 

investment plans depending on population growth, general 

trends in the electricity consumption, and new emerging 

markets. EV-grid integration directly impacts distribution grid 

management and new infrastructure investment planning.   

In order to analyze the impact of the EV integration into the 

utility grid, one should determine a) the user driving patterns 

specific to the location analyzed, b) the EV types that are being 

used, and c) the electrical vehicle supply equipment (EVSE) 

ratings used for charging vehicles, and d) the start of daily 

vehicle battery charging times (home arrival time of each user). 

User driving patterns help to understand the daily traveled 

distance by the average vehicle owner. The EV types that are 

analyzed present the information regarding the size of the 

traction battery (kWh), the rating of the on-board charger (kW), 

and the energy consumed per km for each analyzed vehicle 

(kWh) to estimate the state of charge (SOC) during vehicle re-

connection to the utility grid.  

In the literature, papers investigate the EV-grid integration 

and analyze the problems and opportunities resulting from 

modeling the EV user data [7-13]. Alam et al. suggests that the 

grid can be supported during peak load periods by discharging 

the EVs depending on their SOC values and the traveling range 

requirements [7]. They assume a single type of EV (Nissan 

Leaf) for the case studies. The EVs are assumed to arrive home 

according to a Gaussian distribution with a mean arrival time of 

19:00 with SOC levels selected randomly between 60% and 

80% according to a uniform distribution. Clement et al. 

introduces a coordinated EV charging technique to minimize the 

power losses and voltage deviations in a grid [8]. Each EV is 

assumed to have a battery capacity of 11 kWh and the charger 

has a rated power of 4 kW. A 24-hour distribution transformer 

loading profile is randomly selected. Depending on the EV 

penetration level, four different scenarios are considered; (i) no 

EVs, (ii) 10%, (iii) 20%, and (iv) 30% EV penetration. The EVs 

are randomly located throughout the grid. Each vehicle starts 

charging at a random time step within predefined time intervals, 

i.e., 10:00-16:00, 18:00-21:00, 21:00-06:00. It is also assumed 

that there is only one vehicle per household or office. In [9], the 

impact of EVs on the distribution network is investigated by 

considering the driving patterns, charging characteristics, charge 

timing, and vehicle penetration level. It is assumed that the 

average mileage made by an EV is roughly 26 miles per day and 

the EVs arrive home within different and specific time intervals. 

Charging characteristics and charge timing is determined due to 



 

two types of approaches: uncontrolled charging and smart 

charging. They use different vehicle penetration levels based on 

the studies carried out in different countries. More similar 

approaches can be found in [10-13].  

 

 
 

Fig. 1. Histogram of the collected home arrival time data 

 

 
 

Fig. 2. Histogram of the collected daily trip distance data 

 

In this paper, instead of assuming randomly distributed trip 

characteristics, the real user driving information is collected 

from individual data tracking devices of passenger vehicle 

owners. The collected trip data are first analyzed to generate a 

statistical model of the trip characteristics in terms of home 

arrival times and SOC levels. The SOC level of each vehicle 

before being connected to the grid is calculated based on the 

total daily distance covered by that vehicle. The resulting model 

is then used to simulate and analyze different EV-grid 

integration scenarios. In addition to real trip data, real field 

information of the utility grid is used in the analyses to assess 

the impact of the EV integration on distribution transformer 

loading. Thus, the proposed method produces more realistic 

results in comparison to the studies assuming random scenarios. 

To the best of our knowledge, this study is the first one 

examining real distribution transformer loading integrated with 

real EV user profiles in Turkey. 

In Section 2 of this paper, the real EV usage data modeling is 

discussed. Section 3 is concerned with explaining how the on-

board charging takes place for different EV types and the 

connection hardware used for this study. Section 4 focuses on 

the distribution transformer data modeling. Section 5 presents 

the results and discussions of the study. 

 

2. Modeling of EV Usage Data 
 

To the best of our knowledge, there is no available data on 

the driving patterns of vehicle owners in Turkey provided by 

Turkish Statistical Institute or other organizations at the time of 

this publication. Thus, the daily trip data (home arrival time and 

trip distance) of 10 personal vehicle owners are first collected 

for 365 days to form a more realistic scenario. These data 

belong to daily personal usage of management staff at Başkent 

DisCo, and it is collected using data tracking devices connected 

at each vehicle. The sample set consists of data belonging to 

people with over middle-income profiles since the possibility to 

buy an EV, at least in the near future, is higher for those people.   

In this study, the impact of EVs on a real distribution grid, 

which serves about 1000 mostly residential customers, is 

investigated. To analyze this impact in a realistic way, hundreds 

of trip data is needed in case of penetration levels above 10% 

which is very difficult to collect. Therefore, a model should be 

generated such that the trip characteristics can be estimated. The 

procedure in this paper is as follows. In each data set, the 

extraordinary cases are ignored, i.e., only the daily trip distances 

between ranges 10 km – 80 km and home arrival times after 

16:00 are considered. The corresponding histograms of the 

filtered home arrival times and trip distances are shown in Figs. 

1 and 2, respectively. As it is clear from the figures, both of the 

constructed histograms are quite similar to a Gaussian 

distribution. The mean and standard deviations of the so-called 

Gaussian distributions are (19h55, 1h40) and (39.5 km, 

15.8 km), for home arrival time and trip distance distributions, 

respectively. It is also observed that both of the histograms 

mostly satisfy the well-known 68-95-99.7 rule. As a result of 

these observations, the EVs will be assumed to arrive home 

according to a Gaussian distribution with a mean of 19h55 and a 

standard deviation of 1h40 while analyzing the EV-grid 

integration. It will also be assumed that each EV in the scenario 

will make a trip distance according to a Gaussian distribution 

with a mean of 39.5 km and a standard deviation of 15.8 km. At 

the time of grid connection, the SOC levels of EVs are 

calculated accordingly as explained in the next section. 

 
Table 1. Charging limits according to IEC 61851 Standard [14] 

 

Charging Level Grid Maximum Limits 

Mode 1 
230 V 1- ϕ, 16 A, 3.7 kW 

400 V 3- ϕ, 16 A, 11 kW 

Mode 2 
230 V 1- ϕ, 32 A, 7.4 kW 

400 V 3- ϕ, 32 A, 22 kW 

Mode 3 
230 V 1- ϕ, 63 A, 14.5 kW 

400 V 3- ϕ, 63 A, 43.5 kW 

Mode 4 400 V DC, 125 A, 50 kW 

 

3. Residential On-board EV Charging 
 

On-board chargers convert the utility ac voltage into dc to 

charge the vehicle battery and they are physically located on the 

vehicle. The power rating of the on-board chargers differ at each 

vehicle depending on the topology used and directly impact the 

charging time. IEC 61851 is currently employed in Europe as 

the EV-grid conductive connection standard [14]. Table 1 lists 

the charging limits imposed by the IEC 61851. The maximum 

charging power of the EV is set by the minimum of the 

following components: power rating of the EVSE and the power 

rating of the on-board charger. For this study, the calculation of 

the arrival SOC for each vehicle is found as follows: 
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 ∙ 100 (1) 

 

where SOC is the state of charge of the battery (%), and x is the 

daily traveling distance of the EV (km). Moreover, the charging 

time is found as: 
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where Tc is the total charging time (h), CB is the vehicle nominal 

battery capacity (kWh), P is the charging power (kW), and η is 

the on-board charger efficiency. Each of the on-board chargers 

used in this study is assumed to have a constant 90% operating 

efficiency and 1.0 power factor. The constant 0.8 stands for the 

derating used for the nominal battery capacity to limit the 

battery charging and discharging window and to increase battery 

lifetime. 

Several EV brands are selected in this study. Those are either 

currently sold in Turkey or have the potential to be introduced 

into the market in the near future. Table 2 lists the EVs used in 

this study. The vehicles that are already available in the market 

as of mid-2015 are BMW i3 and Renault Zoe – Twizy. 

 

Table 2. Type of EVs and their specifications 
 

Vehicle Make 

and Model 

Battery 

Capacity 

(kWh) 

EV 

Range 

(km) 

Charger 

Power 

(kW) 

Opel Ampera 15 56 3.3 

Mitsubishi 

MiEV 
16 100 3.3 

Toyota Prius 

PHEV 
4,4 24 2.0 

BMW i3 22 160 7.4 

Renault Zoe 22 100 43 

Renault Twizy 7 80 2.2 

Tesla Model S 42 250 20 

 

Table 3. Case studies for two different EV charging cases: 

normal on-board charging (case 1) and higher power on-board 

charging (case 2) 
 

Vehicle Make and 

Model 

EV Market Share 

(%) 

Case 1 Case 2 

Opel Ampera 14 8 

Mitsubishi MiEV 14 8 

Toyota Prius PHEV 14 8 

BMW i3 14 8 

Renault Zoe 14 30 

Renault Twizy 14 8 

Tesla Model S 14 30 

 

 
 

Fig. 3. Active and reactive power data of TR#2789 averaged 

over the month September 2014 

 

The study here investigates the impact of charging the EVs 

listed in Table 2 utilizing Modes 1 – 3 charging. The availability 

of different charging modes depends on the available wiring and 

the EVSE infrastructure. For this study, only 22 kVA EVSEs are 

used (Mode 2 charging). Those EVSE models are currently 

available in Turkey, i.e., Esarj [15] and VoltRun [16]. 

This study investigates 10%, 20%, and 30% EV penetration 

levels into the vehicle market in Turkey. It is assumed that EV 

customers are uniformly distributed across the distribution grid 

fed by the distribution transformer. For the first case study, the 

types of EVs are selected uniformly among vehicles listed in 

Table 1. However, in the future, the charging time of the EVs 

are expected to decrease as new vehicles enter into the market 

with more powerful on-board chargers.  Therefore, a second 

case study is assumed with an increased share of higher power 

on-board chargers, i.e., Model S and Zoe. Off-board fast 

charging is not considered in this study. The vehicle energy 

consumption (kWh/km) is calculated based on the 

manufacturers’ expected EV range utilizing the available battery 

capacity. 

 

4. Distribution Transformer Data 
 

In 2004, High Planning Council of Turkey has finalized the 

privatization of the distribution network with 21 different 

regions across Turkey. Başkent DisCo (which operates since 

2008) serves 3.8 million customers at seven provinces, and 

distributes 14.3 TWh of annual energy to its customers. 

Distribution transformer loading data used in this study were 

collected between 1 – 30 September 2014 in Ankara using 

Schneider ION 7650 power quality meter. The meter is installed 

at the secondary side of 34.5 kV/0.4 kV, 1000 kVA distribution 

transformer (TR#2789). The total 985 customers that TR#2789 

feeds are comprised of 90% residential apartment houses and 

10% small-scale commercial shops.  

The measurements have been taken according to the IEC 

61000-4-30 [17] and the collected data are transmitted to the 

Başkent DisCo servers via 3G communication. The power 

measurements are recorded with 10 min averages. Fig. 3 shows 

the collected active power data in kW and reactive power data in 

kVAr averaged over the month of September 2014. This data is 

used as the base loading data for TR#2789 with no EV 

integration. The loading on TR#2789 has two peaks, one is 

around noon and the other is between 19:00 –21:00 

approximately. This correlates with the home arrival data 

described in Section 2. The maximum active power drawn from 

the transformer is around 200 kW and 50 kVAr which 

corresponds to a maximum kVA loading of ~20% levels. 

Therefore, TR#2789 is a lightly loaded transformer with a 

significant capacity margin, especially in the fall season. It is 

important to note that the most common air heating method in 

the apartment houses in Turkey is through burning natural gas 

(NG). As of 2015, most of the cities in Turkey have NG 

distribution systems for residential houses. 

In this study, each residential apartment house is assumed to 

possess one passenger vehicle. Three EV penetration cases are 

examined among those vehicles, which are 10%, 20%, and 30%. 

The following section describes the analysis and results of the 

performed study. 

 

5. Analysis and Results 

 
In this section, the developed EV user model is translated 

into charging power model and then integrated with the 



 

distribution transformer data. Each of the two cases is simulated 

with 10%, 20%, and 30% penetration levels. Simulation results 

are illustrated in Figs. 4 – 9. It is important to note that the data 

starts at noon and continues until 4 am in the morning to focus 

only on the charging events. The non-charging time frame is not 

included to present a better understanding of the charging time 

frame. Moreover, this charging power is only valid for one EV 

charging simulation, and the data is different for each simulation 

run as this is a random process. However, the overall impact will 

be similar as the vehicle usage characteristics follow the 

Gaussian distribution.   

 

 
 

Fig. 4. Result of transformer loading for 10% EV penetration 

(case 1)  

 

 
 

Fig. 5. Result of transformer loading for 20% EV penetration 

(case 1) 

 

 
 

Fig. 6. Result of transformer loading for 30% EV penetration 

(case 1) 

 

According to the results presented in Figs. 4 – 9, the power 

consumption at peak hours will increase considerably depending 

on the EV market penetration. Two important conclusions can 

be drawn from the results: 

- as the ratio of EV penetration increases, TR#2789 has to 

supply higher peak power to its customers.  

- higher on-board charging power translates into higher peaks 

as shown in Figs. 7 – 9. Although the total average travel 

distance is the same for the two cases (case 1&2 in Table 3), 

case 2 results in a higher peak power demand from 

TR#2789.  

Results show that the installation of EVSEs should be tightly 

regulated by the DisCos to manage the increasing charging 

power demand by the on-board chargers. Another solution is to 

manage the charging events depending on the loading of the 

transformer. Applications such as smart charging or vehicle-to-

grid power transfer can be utilized to provide a more sustainable 

solution for the operation of the utility grid with increased ratio 

of EV penetration. 

 

 
 

Fig. 7. Result of transformer loading for 10% EV penetration 

(case 2)  

 

 
 

Fig. 8. Result of transformer loading for 20% EV penetration 

(case 2) 

 

 
 

Fig. 9. Result of transformer loading for 30% EV penetration 

(case 2) 

  

Although TR#2789 is a lightly loaded transformer, it is in 

general less loaded than an average transformer located in the 

city of Ankara. Therefore, considering older infrastructure and 

more heavily loaded transformers, the impact shown in the 

figures might worsen. What is more, the distribution 

components (i.e. conductors, switches, fuses, LV circuit 

breakers, and other protection/control devices) might also need 

upgrades depending on their loading level. Specific to 

transformers, according to the duration and severity of the 

overload, decrease in the lifecycle can be calculated based on 



 

the model described in IEEE Std. C57.91 [18]. Looking at the 

results, it is expected that TR#2789 will age faster depending on 

its hot-spot temperature [19]. 

In addition to the above discussions, on-board charging 

power rates are increasing with newer EV models. As illustrated 

by the Figs. 7 – 9, this will worsen the impact of EVs on the grid 

compared to lower power on-board chargers. However, if the 

work place charging gets more widespread, the impact of EV-

grid integration at the time of home arrival will be reduced. 

Also, increasing employment of swappable batteries instead of 

fixed battery packs will reduce the required energy demand from 

the grid using on-board chargers at the end of the day. The most 

imminent result from this analysis is the need to develop a more 

advanced charging strategy to cope with all the problems that 

will arise as the penetration levels increase. This study only 

considers, the transformer loading but a future study will include 

a more complete impact on the utility grid. 

 

6. Conclusion 
 

Increasing penetration of EVs has to be carefully examined 

to assess the negative impacts of their integration into the 

distribution grid.  This study presents one of the first analyses in 

Turkey that translates the real user behavior into demanded 

active power from the distribution transformer. The study 

concludes that while the user profiles are stochastic, they can be 

modeled as a Gaussian distribution that helps estimating the 

power demand. Increasing on-board charger power ratings of 

new EVs will worsen the situation for the utility grid and require 

increased infrastructure component ratings. It is of utmost 

importance for the DisCo to understand those impacts and take 

necessary actions that will direct users towards smart and 

controlled charging. What is more, DisCos in Turkey should 

carefully examine and regulate the ratings and numbers of the 

installed EVSEs in the residential neighborhoods. 
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