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Abstract 
 

In this study we develop a numerical method for evaluation 

of hypersingular surface integrals, which arise in the solution 

of electric field integral equation (EFIE) via Nyström 

method. Due to the divergent contribution of an infinitesimal 

area around the singular point, hypersingular integrals are 

told to be numerically intractable and analytical methods are 

employed for evaluation of these integrals. In this study we 

interpret hypersingular integrals as the second order 

derivative of weakly singular integrals, which can be 

efficiently evaluated using quadrature rules.  By evaluating 

the derivative of weakly singular integrals numerically, we 

have shown that hypersingular integrals can accurately be 

evaluated using the proposed method. We have solved a 

scattering problem via Nyström method to confirm the 

validity of the method.    

 

1. Introduction 
 

Electric field integral equation (EFIE) set up an equation 

which relates the electric field to the unknown current density 

by using the boundary conditions on the surface or within 

volume. The main advantage of the method over differential 

equation methods is that, it only discretizes the domain where 

sources exist and thereby require lesser number of unknowns 

[1]. On the other hand, the integrals to be evaluated are singular 

and complex source-field relations should be evaluated 

accurately to obtain satisfactory results for the corresponding 

problem. 

A popular method to solve EFIE is the method of moments 

(MoM) procedure. The method introduces a set of basis 

functions for the unknown current density and tries to find the 

coefficients of the basis functions by minimizing projection of 

error to the space spanned by some testing functions. The basis 

and testing function are generally selected as divergence 

conforming which help to reduce the order of singularity of the 

integral to be evaluated. On the other hand in the locally 

corrected Nyström (LCN) method, which is introduced in [2, 3] 

as an alternative to conventional MoM procedure, the integrals 

are replaced by quadrature rules for faster precompuation and 

memory reduction. The unknowns in  LCN method are samples 

of current at selected quadrature nodes and therefore no basis 

and testing functions are used for the unknown current density. 

In the absence of the divergence conforming basis and testing 

functions the singular kernel of EFIE should be evaluated 

directly without reducing the order of singularity. The kernel of 

EFIE possesses R/1  terms and 
3/1 R  terms. The former terms 

result from the integral of free space Green’s function and the 

latter terms result from the double gradient of free space Green’s 

function. Using the convention of boundary element method we 

call the surface integral of  R/1  terms as weakly singular 

integrals and the surface integral of 
3/1 R  as hypersingular 

integrals. 

The literature for evaluation of weakly singular is diverse and 

a list of references for analytical or numerical methods can be 

found in [4]. However the literature addressing evaluation of 

hypersingular integrals is relatively narrow and few studies 

introduce methods for these integrals to be used in 

electromagnetic scattering problems. A Cauchy principal value 

like approach in the limiting sense is used in [5] and a similar 

approach along with Stoke’s theorem is used in [6] to obtain 

simpler formulas. Hypersingular surface integrals are converted 

to regular line integrals on curvilinear patches in [7] but explicit 

formulas are not introduced. Evaluation of hypersingular 

integrals on non-planar surfaces is introduced in [8], where 

Hadamard finite part interpretation is used to eliminate 

divergent terms. Apart from the above mentioned analytical 

methods in electromagnetics literature, also numerical methods 

are developed in mathematical literature [9-11] for evaluation of 

hypersingular integrals. In the present discussion we interpret 

hypersingular integrals as the second order derivative of the 

weakly singular integrals. Unlike the existing numerical 

methods, in which the singularity of kernel is of 
3/1 R  type, 

efficient and machine precision methods can be exploited to 

evaluate weakly singular integrals whose singularity is of R/1  

type. In this study we utilized double exponential formulas 

introduced by [12] to evaluate weakly singular integrals 

numerically. It has been shown in [4] that use of double 

exponential formulas for numerical integration is far more 

accurate when compared to the use of Gauss-Legendre 

quadrature rules. Here we have shown that second order 

derivative of weakly singular integrals represent hypersingular 

integrals. Therefore numerical derivation of weakly singular 

integrals can achieve high accuracy despite the accuracy 

degradation due to numerical derivation. The method is 

validated by evaluation of some hypersingular integrals 

numerically and comparing the result with those obtained using 

analytical methods. Moreover we have solved a TEz scattering 

problem from a perfect electrically conducting (PEC) cylinder 

and showed that the result is consistent with analytical results.      

 

2. Formulation 
 

In this study we deal with evaluation of the hypersingular 

integral, 
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where S   is the flat surface over which the integral is to be 

evaluated, unprimed variables are given in observation 

coordinates, primed variables are in source coordinates and the 

superscript ' h ' denotes that the integral is hypersingular. 

It should be noted that the integral in (1) is a dyadic with 

four terms. Each term is represented by ijI  and is given by, 
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for 2,1, ji  

 

The first derivative in (2) is deliberately kept out of the 

integral sign and it can be taken under the integral sign only if 

the integral can be interpreted as a finite part integral. However 

the derivative under the integral sign can be converted to a 

derivative in observation coordinates by using 

ii xx  //  and then can be taken outside the integral 

sign so that we can rewrite (2) as, 
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The implication of (3) is that we can first evaluate the weakly 

singular integral and then apply numerical derivation to obtain 

the result for the hypersingular integral. Thus to evaluate the 

hypersingular integral, we start with numerical evaluation of the 

weakly singular integral, 
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Then we use second order central finite difference to obtain 

the elements of the dyadic given in (2). These elements are 

given as, 
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The error in evaluation of hypersingular singular integrals in 

(5) is due to three main sources. First the weakly singular 

integral in (4) is evaluated numerically and this introduces an 

error which depends on the type of the quadrature rules used as 

well as the number of quadrature nodes employed. Secondly, the 

centered difference formula for second order derivative is only 

second order accurate and introduces an error with order 

 2O . This is referred to truncation error, which is minimized 

by selecting    arbitrarily small. A third source of error is 

rounding error which is also introduced by numerical derivation. 

The nominators in (5) can at most be evaluated to machine 

precision and the result is rounded at a specified digit. The error 

due to rounding is amplified by dividing the result to 
2 , since 

  is selected as a small number to avoid truncation error. 

In this study we selected the integration domain as a flat 

quadrilateral patch, which is a common meshing element in 

numerical simulations. The vertex points of the quarilateral are 

at   wee  ii xx 21 ,  for i=1,2,4 and the observation point is at 

 2010 , xx . This is plotted in Fig. 1. The surface is divided into 

four subtriangles sharing their common vertex at the singular 

point. It should be noted that the method is valid to any type of 

flat surface which can be represented as a collection of 

subtriangles. 

 

 

       

 

 

 

 

 

 

 

 

 

 

Fig. 1. The triangular patch over which the weakly singular                

integral is evaluated 

  

In order to evaluate all the hypersingular integrals in (5) the 

weakly singular integral is evaluated at nine different points 

within the vicinity of the singular point. To evaluate the weakly 

singular integral we utilized the generalized cartesian product 

rule based on double exponential formula, which is shown to 

yield very accurate results for weakly singular integrals in [4]. 

The rule approximation of the quadrature rule is given by, 
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where the product nh   is kept constant, ku  are the nodes of 

the quadrature rule and kw  are the corresponding weights. The 

nodes are given by, 
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and the weights  kw  are given by, 
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The advantage of using the quadrature rule based on the 

double exponential (DE) formula  over other quadrature rules is 

that the rule places most of the nodes close to the endpoints and 

therefore it is effective for integrals having endpoint 

singularities. 
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3. Numerical Results 
 

In order to show the validity of the formulas in (5), we 

evaluated the hypersingular integrals on a square patch with 

sidelength of 1 and whose center point is located at  5.0,5.0  . 

The observation point is selected at an arbitrary point within the 

triangle and is located at  44.0,3.0 .  First, we evaluated the 

weakly singular integral in (4) by the quadrature rule employing 

double exponential formula and compared the result with 

analytical result obtained using Duffy transform [13]. In 

application of the rule we selected the product 3nh , to avoid 

numerical underflow and overflow [4]. We have also used 

Gauss-Legendre quadrature rules to evaluate the same integral to 

allow comparison.  The error of the quadrature rules, as a 

function of number of nodes, is plotted in Fig. 2. 
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Fig. 2. Number of Nodes versus Error for quadrature rules, 

Double exponential formulation and Gauss-Legendre 

 

It can be observed from Fig. 2 that quadrature rules 

employing double exponential formula give more accurate 

results for high number of quadrature nodes, when compared to 

Gauss-Legendre quadrature rules. Moreover the lower limit for 

DE formulation is around 
1210  which is obtained using about 

127 quadrature nodes. 

Next we evaluated the hypersingular integrals over the same 

patch using (5) and evaluated the error by comparing the 

numerical results with analytical results, which are obtained 

using [8]. We have presented the numerically and analytically 

obtained values in Table 1. Also we plotted the error as a 

function of   in Fig. 3.  Here we employed 127 point 

quadrature nodes based on DE formulation to evaluate weakly 

singular integrals. 

 

Table 1. Results obtained for hypersingular integrals evaluated 

with 127 quadrature nodes with 410   
 

 This Study (Numerical) Reference [8] (Analytical) 

xxI  7.345024958 7.345024270 

xyI  0.2097641838 0.2097641264 

yyI  5.442148228 5.442146051 

 

From Fig. 3 it can be deduced that there is an optimum value 

for epsilon for which the best accuracy is obtained. Below this 

value rounding error dominates the total error and above this 

value truncation error is dominant. 
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Fig. 3. The Accuracy of the Numerical Results of (5) as a 

function of epsilon 

 

As the second numerical example we consider a TMz 

scattering from a perfect electrically conducting (PEC) circular 

cylinder. The length of the cylinder is sufficiently long such that 

we can use Mie series solution as the analytical solution. The 

excitation is a plane wave with  xjkE 00 exp120   which 

is propagating in x  direction. The radius ‘ a ’ of cylinder is 

selected such that we have 3ka . The circumference of the 

cylinder is represented with 100 meshes and locally corrected 

Nyström method under one point quadrature rule is used to 

evaluate induced current on the cylinder. The current as a 

function of the angle around the cylinder is plotted in Fig. 4. It 

is observed from the figure that the numerical results are 

coherent with the analytical results obtained using the Mie series 

solution. 
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Fig. 4. Current induced on the cylinder for the TMz problem 

 

 



4. Conclusions 
 

In this study we propose a new method for evaluation of 

hypersingular surface integrals. The method relies on the second 

order numerical derivative of the weakly singular surface 

integral. The weakly singular integral is evaluated using a 

quadrature rule based on the DE formula and numerical results 

have shown that this quadrature rule is far more accurate for 

weakly singular integral as compared to conventional quadrature 

rules such as Gauss-Legendre. 

In order to evaluate the hypersingular integral second order 

derivative of the weakly singular integral is approximated by 

central difference equations. By numerical results it has been 

shown that both rounding error and truncation error degrade the 

accuracy for the results of hypersingular integrals. 

Finally the locally corrected Nyström method is applied for 

the solution of a TMz scattering problem from a PEC circular 

solution. In evaluating the self cell contribution, we have used 

the formulas in (5) and evaluated the current induced on the 

cylinder. Numerical results appear to be consistent with 

analytical results. 

The new procedure is also applicable to curvilinear surface 

elements and we expect that this method will improve the error 

controlling capacity of Nyström method as well. The application 

of the method to non-planar surfaces is considered as a future 

study.  
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