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Abstract
In this paper a new Boolean equation for the orthogonalization
of Boolean functions respectively of Ternary-Vector-Lists of
disjunctive normal form is presented. It provides the mathemat-
ical solution of orthogonalization. The new equation is based on
the new method of orthogonalizing OR-ing ∨gwhich enables
the building the union of two product terms respectively of two
Ternary-Vectors whereby the result is orthogonal. The algo-
rithm based on the new equation has a faster computation time
in contrast to other methods. Further advantage is the smaller
number of the product terms respectively of the Ternary-Vectors
in the orthogonalized result which reduces the number of further
calculation steps. Furthermore, the new equation can be used
as a part in the calculation procedure of getting suitable test
patterns for combinatorial circuits for verifying feasible logical
faults.

1. Introduction
Combinatorial circuits, which are described mathematically

by corresponding Boolean function, consist of several gates
which are built of transistors. Faults caused by defective tran-
sistors of a gate or broken respectively shorted wires between
gates affects the output of the combinatorial circuit. All chang-
ing behavior of the circuit can be described by the Boolean Dif-
ferential Calculus by which all possible test patterns can also
be determined which are necessary to discover possible occur-
ing faults in the logic circuit. However, this calculation method
can be performed easier in TVL-arithmetic by the method in
[11] and thereby the advantages in terms of computation time
and memory request can be utilized computationally very well
(Fig. 1).

Figure 1. Calculation steps for test patterns in TVL-arithmetic

In this way, the Boolean function is converted in a correspond-
ing disjunctive normal form D( f ) which is orthogonalized and
subsequently transformed into the orthogonal antivalence nor-
mal form A( f orth). For A( f orth) the Boolean Differential Cal-
culus is performed on the TVL-level. After another orthogonal-
ization of the result of the differential A( d f

dxi
) it is transformed

into the differential D(( d f
dxi

orth
)) as the orthogonal disjunctive

normal form. This differential provides all possible test pat-
terns. A new equation for the orthogonalization of disjunctive
normal form D( f ) based on the new method orthogonalizing
OR-ing ∨gwhich is used as a part of the whole calculations for
determining test patterns is presented in this work.

2. Theoretical Foundations
2.1. Ternary-Vector-List (TVL)

Ternary-Vector-Lists (TVLs) are representations of
Boolean functions and can be treated computationally easier.
Using TVL has many advantages in terms of computation
time and memory request [1], [11], [12]. TVL consists of one
or more Ternary-Vectors (TVs) which constitute the terms or
the clauses contained in the Boolean function. The length of
a TV called dimension which can take one of three possible
values for each point, t ∈ {0,1,−}. A non-negated variable
is characterized by ‘1’, a negated by ‘0’ and not included by
‘-’. A TVL consists of m-rows and n-columns (number of
independent variables) and is characterized with m,n ∈ N+:

TVL =

 TV1
TV2

:
TVm

 :=



xn ... x2 x1

t1n ... t12 t11

t2n ... t22 t21

. ... . .

tmn ... tm2 tm1

 (1)

Any form of a function, that means disjunctive normal form
(DNF), conjunctive normal form (CNF), equivalence normal
form (ENF) and antivalence normal form (ANF), can be
represented as a TVL. As no operators (∨,∧,�,⊕) in the
TVL presentation are given, the designations of the matrix
by D( f ),K( f ),E( f ) and A( f ) show the type of the TVL
[10], [11], [12], [17]. The rule for AND-ing (∧) of two TVs
(TVi, j) of the type D( f ), which represent an average TV (TVk),
is defined by Table 1:

∧ 0 1 − if ×≥ 1
0 0 × 0 TVk =× (empty TV)
1 × 1 1 else
− 0 1 − TVk = TVi∧TV j

Table 1. Rule for AND-ing of two TVs

The rule for OR-ing (∨) of two TVs (TVi, j) of the type D( f ),
which represent the union of both TVs, is defined by Eq. (2):

TVi∨TV j =

[
TVi
TV j

]
(2)



2.2. Characteristic of Orthogonality

A Boolean function or TVL is orthogonal if its product
terms respectively its TVs are disjoint to one another in pairs.
Consequently, these product terms (mi, j) or these TVs (TVi, j)
then have no common covering after their logical conjunction,
mi(x)∧m j(x) = 0 or TVi∧TV j =×. An orthogonal disjunctive
normal form is equivalent to the orthogonal antivalence normal
form including the same product terms, D( f )orth = A( f )orth.
That means the orthogonalization of a disjunctive normal form
facilitates the transformation into an orthogonal antivalence
normal form. This characteristic simplifies the handling for fur-
ther calculations as the Boolean Differential Calculus especially
in TVL-arithmetic.

3. Method of orthogonalizing OR-ing ∨j
3.1. ∨gof two product terms or of two TVs

Orthogonalizing OR-ing ∨gis a variant of building the dis-
junction of two product terms (mS1(x),mS2(x)) whereby the re-
sult is orthogonal. Orthogonalizing OR-ing is explained by an
example in a K-map with 4 variables (Fig. 2). Two product
terms (a group of 8 and a group of 4) are orthogonalizing OR-
ed and a result consisting of several blocks appears which are
pairwise orthogonal to each other.

Option a)

1st Summand (S1)

2nd Summand (S2)

2nd Block
1st Block

x1

x2

x3

x4

1 1 0 0

1 1 1 0

1 1 1 0

1 1 0 0

Option b)

2nd Summand (S1)

1st Block

1st Summand (S1)

x1

x2

x3

x4

1 1 0 0

1 1 1 0

1 1 1 0

1 1 0 0

Figure 2. Example of ∨gin a K-map

Option a): Option b):

x̄2 ∨gx3x1 = x̄3x̄2∨ x3x̄2x̄1∨ x3x1︸ ︷︷ ︸
Sum of Blocks

x3x1 ∨gx̄2 = x3x2x1∨ x̄2︸ ︷︷ ︸
Sum of Blocks

The method, “the orthogonalizing OR-ing ∨g” , is based on the
orthogonalizing difference-building [6], [5], which is the ba-
sis for setting up an equation (Eq. (3)) in the following. The
method ∨gcorresponds to the removal of the intersection which
is formed between the first summand mS1(x) and the second
summand mS2(x), from the first summand mS1(x), which means
mS1(x) \ (mS1(x)∧mS2(x)) and the disjunction of the second
summand mS2(x) at last; the result is orthogonal:

mS1(x) ∨gmS2(x) =
( n−1∧

s1=0
xn−s1

)
∨g( n−1∧

s2=0
xn−s2

)
:=

=

[( n−1∧
s1=0

xn−s1

)
∧
( (n−1) j∨

s2=0
x̄(n−s2) j

)]
∨
( n−1∧

s2=0
xn−s2

)
= (3)

=[
(
xnxn−1..x1

)
S1
∧
(
x̄n j ∨ xn j x̄(n−1) j

∨ ..∨ xn j x(n−1) j
..x̄1 j

)
S2
]∨

∨
(
xnxn−1..x1

)
S2

In this case, the formula (
∨n j

i=1 x̄i j = x̄1 j ∨ x1 j x̄2 j ∨ .. ∨
x1 j x2 j ..x̄n j ) from [7] is used in rearranged form to describe the
orthogonalizing OR-ing in a mathematically easier way, where
x1 j ,x2 j , ..,xn j are literals of the second summand product term.
Depending on the starting literal the result may differ. There are
many equivalent options which only differ in the form of cov-
erage. If both product terms are disjoint (orthogonal) to each
other, mS1(x) ⊥ mS2(x), the result corresponds to the disjunc-
tion of both product terms:

mS1(x) ∨gmS2(x) = mS1(x)∨mS2(x) (4)

By swapping the positions of the two summands, the result
changes. However both solutions are equivalent because the
same set is covered. They only differ in the form of coverage
which can also be seen in Figure 2, in which both possible solu-
tions are presented. The following Equation (5) is used for the
orthogonalizing OR-ing of two Ternary-Vectors (TVS1 ,TVS2 ):

TVS1 ∨gTVS2 := [tn, .., t2, t1]S1 ∨g[tn, .., t2, t1]S2 = (5)

=

 [tn, .., t2, t1]S1 ∧

 tn .. − −
: : : :
tn .. t2 −
tn .. t2 t1


S2

∨ [tn, .., t2, t1]S2

3.2. ∨gof Function and Product Term or TVL and TV

By Equation (6) based on the orthogonalizing OR-ing it is
possible to calculate an orthogonal union of an orthogonal func-
tion fS1(x)

orth and a product term mS(x). Equation (6) and (7)
are used in the new function for orthogonalization which is de-
scribed in the next chapter. At the same time the orthogonal
function fS1(x)

orth in (6) is calculated by Equation (3):

fS1(x)
orth ∨gmS2(x) =

( ls1∨
i=1

n−1∧
s1=0

xi,(n−s1)

)
∨g( n−1∧

s2=0
x(n−s2)

)
:=

(6)

=

ls1∨
i=1

[( n−1∧
s1=0

xi,(n−s1)

)
∧
( (n−1) j∨

s2=0
x̄(n−s2) j

)]
∨
( n−1∧

s2=0
x(n−s2)

)
In this case it is important to stress that any outcome of each
individual ∨g-linking has to be considered. Corresponding to
the TVL-arithmetic the orthogonalizing OR-ing between a TVL
(D( fS1)) and a TV (TVS2 ) can be determined by the Equa-
tion (7):

D( f orth
S1

) ∨gTVS2 =

 TV1S1

TV2S1

:
TVmS1

 ∨g[TVS2 ] :=

=

 TV1S1 	TVS2

TV2S1 	TVS2

:
TVmS1 	TVS2

∨ [TVS2 ] (7)

4. Orthogonalization based on ∨j
4.1. Boolean Equation

A new Equation (8) based on the new method of orthog-
onalizing OR-ing ∨g(ov) is formed for the orthogonalization
of Boolean functions of DNF. With n ∈ N+ as the number of
product terms follows:



f (x)orth
ov :=

n

∨���
i = 1

mi(x) = (8)

= m1(x) ∨gm2(x) ∨g.. ∨gmn−1(x) ∨gmn(x)

In the following the explanation for Equation (8) is provided:

• The orthogonalizing OR-ing is realized between the first
and the second product term, m1(x) ∨gm2(x), by Eq. (3).
After that, the orthogonalizing OR-ing is realized be-
tween the result of

(
m1(x) ∨gm2(x)

)
and the third prod-

uct term,
(
m1(x) ∨gm2(x)

)
∨gm3(x), by Eq. (6). The

procedure is continued until the last product term. The
method ends with the last product term.

The orthogonal result may differ depending on the order of the
product terms due to the commutativity. All solutions are equiv-
alent. However, the resorting of the product terms has the ad-
vantage to obtain better results, that means an orthogonal func-
tion with a smaller number of product terms in the result. The
re-ordering starts with the smallest product term and ends with
the largest product term. The general validity is proved by math-
ematical induction:
Proof.
(1) Basis: n = 1

1

∨���
i = 1

mi(x) = m1(x)

m1(x) = m1(x) (Statement is true)

(2) Inductive step: n = n+1

n+1

∨���
i = 1

mi(x) = m1(x) ∨gm2(x) ∨g.. ∨gm(n+1)−1(x) ∨gmn+1(x)

( n

∨���
i = 1

mi(x)
)
∨gmn+1(x) = m1(x) ∨g.. ∨gmn(x)︸ ︷︷ ︸

n

∨k
i = 1

mi(x)

∨gmn+1(x)

Example: Function f5(x) = x̄2∨ x1∨ x3 ≡

 − 0 −
− − 1
1 − −

 is

orthogonalized by Eq. (8). Both functions are illustrated in K-
maps (Fig. 3)

f5(x)
orth = x̄2 ∨gx1 ∨gx3 = (x̄2x̄1∨ x1) ∨gx3 =

= x̄3x̄2x̄1∨ x̄3x1∨ x3 ≡

 0 0 0
0 − 1
1 − −


f5(x) x1

x2

x3

1 1 1 0

1 1 1 1
⇔

f5(x)orth x1

x2

x3

1 1 1 0

1 1 1 1

Figure 3. f5(x) and f5(x)orth in K-maps

The corresponding Equation (9) is derived for the orthogonal-
ization in the TVL-representation. The orthogonalization of a
TVL of disjunctive normal form D( f ) or the conjunctive nor-
mal form K( f ) is determined by the same equation due to the

duality. The interpretation of the forms take place after the or-
thogonalization.

D( f )orth
ov :=

n

∨���
i = 1

TVi with n ∈ N+ (9)

4.2. Algorithm ORT H[ ∨g]
In Figure 4 the flow chart for the algorithm for the orthogo-

nalization of a TVL of the disjunctive normal form D( f ) based
on the new Eq. (9) is illustrated. Two sub-functions Absorb()
and Sort() are additionally used to reach a better result, which
means the number of TVs in the orthogonal result is smaller in
contrast to the methods in [14] and [17].

Figure 4. Flow Chart of ORT H[ ∨g]
The function Absorb() ensures that TVs which constitute
smaller product terms can be absorbed by TVs which constitute
larger product terms if those are already covered by the larger
ones. Thereby, the number of TVs is reduced by absorption.
Thus, duplicated TVs are reduced to a single TV. Consequently,
the number of TVs that have to be treated decreases. By the
function Sort() optionally follows the resorting of the TVs from
small to large, which means from TVs with higher number of
{0,1}-values to TVs with lower number of {0,1}-values.After
proceeding these two sub-functions the process of orthogonal-
ization according to the new Eq. (9) is performed. If the order
of the two sub-functions is interchanged, the result may differ
but all several results are equivalent to each other.

5. Measurements and Results
5.1. Comparison of Computation Times

Figure 5. Comparison of computation times (TV Lin with 5
TVs)



Figure 6. Comparison of computation times (TV Lin with 25
TVs)

In diagrams 5 and 6 the methods for orthogonalization in
[14] (blue) and [17] (red) are compared with the new method
ORT H[ ∨g] (violet) in respect to the dimension dim[i]. Dimen-
sion corresponds to the number of literals of the product terms.
One literal corresponds to one input of the combinatorial circuit.
As in most applications the number of inputs of a circuit does
not rise above 50 the measurements are limited to the dimen-
sion of dim[50]. The new method has faster computation time
in comparison to the other two methods in [14] (blue) and [17]
(red). The computation time of the method in [14] increases
polynomial by increasing dimension. The value of the poly-
nome rises with increasing number of TVs in the Input-TVL.
The curve for the new method runs similarly dynamic as the
curve for the method in [17]. However, the computation time
of the new method is faster in comparison. The distinction is
that the new method calculates the orthogonalizing OR-ing ∨g
consistently no matter if two TVs are orthogonal.

Figure 7. Comparison of the method in [17] and the new
method excluding Absorb() and Sort() (TV Lin with 5 TVs)

Figure 8. Comparison of the method in [17] and the new
method excluding Absorb() and Sort() (TV Lin with 25 TVs)

In the method in [17] the investigation if two TVs are orthog-
onal to each other takes place in form of another sub-function;
this might be a reason for the deterioration of the computation
time. In summary, it has to be clarified here that the new method
has a faster computation time for TVLs including the number
of TVs between 2 and 25 than the other methods. Even if the
two sub-functions Absorb() and Sort() are excluded, the new
method (violet) has faster computation time in comparison to
the method in [17] (red), as shown in Figure 7 and 8.

5.2. Comparison of the Number of TVs in the Result-TVL

In this section the number of TVs in the result-TVL is an-
alyzed in comparison to the methods in [14] and [17]. In this
case, the average number of TVs in respect to the dimension
dim[i] in the orthogonal result is compared. The average value
is formed of 100 calculated tasks for each dimension. That com-
parison with an input-TVL (TV Ln) including 5 TVs is shown in
Fig. 9 and the comparison with an input-TVL (TV Ln) includ-
ing 25 TVs is illustrated in Fig. 10. Both charts illustrate that
the new method ORT H[ ∨g] (violet) depending on the dimen-
sion dim[i] offers better results than the other two methods in
[14] (blue) and [17] (red) with increasing number of TVs in
TV Ln. This attribute is important because a further calculation
of orthogonalized TVL needs fewer operations and is carried
out more quickly. In this case, a further calculation of a TVL
such as the Boolean Differential Calculus is performed with a
fewer number of TVs and thus reduces both the memory request
and the number of calculation steps which certainly affects the
computation time. The corresponding average values depend-
ing on the dimension dim[i] are partially shown in Table 2.

Figure 9. Average number of TVs in the result-TVL (TV Lin
with 5 TVs)

Figure 10. Average number of TVs in the result-TVL (TV Lin
with 25 TVs)



TV Lin with 5 TVs TV Lin with 25 TVs
Methods Methods

dim[i] [14] [17] ORT H[ ∨g] [14] [17] ORT H[ ∨g]
1 1.76 1.67 1.00 2 1.66 1.00
2 2.69 2.61 1.29 3.96 2.94 1.00
3 3.76 3.71 1.73 7.39 5.23 1.26
: : : : : : :
25 43.00 44.10 26.63 1381.58 897.47 373.82
: : : : : : :
48 99,86 71,60 62,77 1949.19 1069.61 897.69
49 108.20 73.59 69.25 2010.11 888.01 854.23
50 102.57 76.98 67.78 2102.15 1011.66 878.78

Table 2. Average values of TVs in result-TVL

6. Conclusion
In this paper, a new Boolean equation for the orthogonaliza-

tion of Boolean functions respectively of Ternary-Vector-Lists
of disjunctive normal form is presented which is based on the
new combination method of orthogonalizing OR-ing ∨gand has
general validity. By the application of the new equation the
processing step for orthogonalization is also supported in the
TVL-arithmetic. Boolean equation for the problem of orthogo-
nalization of disjunctive normal form is shown here. Addition-
ally, the simpler computational recharge of orthogonal Ternary-
Vector-Lists has advantages in terms of memory request and
computation time. The application of the Boolean Differential
Calculus on orthogonal TVLs is significantly facilitated. The
new method ORT H[ ∨g] has faster computation time in respect
to increasing dimension in contrast to the methods in [14] and
[17]. Furthermore, the new method has the property to deter-
mine better results, which means the average value of the num-
ber of product terms respectively of Ternary-Vectors in the or-
thogonal result is lower in contrast to the other methods. Thus,
further processing of a result-TVL with a smaller number of
TVs has the advantages in terms of memory request and com-
putation time because the number of additional operation steps
is reduced. The new function can used as a part of a calculation
for determining of test patterns for verifying possible faults in
combinational circuit.
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[1] D. Bochmann. Binäre Systeme - Ein Boolean Buch.

LiLoLe-Verlag, Hagen, Germany, 2006.

[2] D. Bochmann and C. Posthoff. Binäre dynamische Sys-
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