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Abstract 
 

The electrocardiogram (ECG) is the most common non-

invasive test possessing a significant clinical value to cardiac 

disease diagnostic. In this paper, we developed a robust ECG 

delineation algorithm based on Ensemble Empirical Mode 

Decomposition (EEMD) which has very interesting 

properties on pseudo periodic signals. The proposed 

algorithm consists to identify an optimum and appropriate 

set of IMFs to reconstruct a complex or wave from ECG 

signal. First, QRS complexes are delineated by detecting the 

peaks of individual waves. Then the determination of P and 

T wave peaks was performed. We evaluated the reliability of 

our method on two manually annotated databases: QT 

database and MIT-BIH Arrythmia database. It proves 

particularly effective in cases of very noisy recordings or 

with abnormal morphology. A comparison is also made 

between the proposed method and other delineation system. 
The results showed a better or comparable performance and 

accurate fiducial points detection. 

 

1. Introduction 
 

The ECG signal, representing the electrical activity of the 

heart, is the diagnosis technique of the most common heart 

disease. It is a non-stationary random signal structured (as 

shown in Fig. 1) by a succession of waveforms (P, Q, R, S, and 

T). The analysis of these waves allows the diagnosis of certain 

cardiac diseases which their detection and characterization 

prove to be important.  

The P wave represents the contraction of the atria.  It is a 

deflection corresponding to the depolarization of the right and 

left atria. This wave is often positive and of low amplitude. The 

QRS complex corresponds to a set of deflections due to the 

depolarization of the ventricles. The T wave is the rest period of 

the heart. It is a deflection corresponding to ventricular 

repolarization [1,2]. Any morphological or temporal 

modification of its events is pathology; changes concerning the 

rate or frequency are cardiac arrhythmias (fatal diseases). 

Therefore, extraction and identification of ECG signal 

parameters are an essential step for any analysis and diagnosis. 

Many conventional methods exist to effectively detect 

fiducial points. These segmentation methods are based on 

derivative or differential filtering techniques [3-7] or on wavelet 

transform [8-10]. The wavelet transform provides a description 

of the signal in the time-scale domain, permitting a temporal 

description of ECG features at different resolutions. Thus, this 

technique is useful for ECG analysis, despite it is composed of 

waves of very different temporal characteristics [11]. The 

continuous wavelet transform generally contains redundant 

information on the signal. In practice, we employ discrete 

wavelet families which are less redundant, and which contain 

enough information for analysis. The use of DWT in the various 

works of literature is justified [8-10].  

The disadvantage of wavelet methods mentioned above is 

that P and T waves tend to overlap when the heart rate increases. 

These waves having the same frequency components, are 

supposed to meet the same scale. In fact, this tool is not 

appropriate in this case. 

Other methods as in [3,4] are based on derivative digital 

filtering. Noises and P and T waves are eliminated by bandpass 

filtering then QRS complex enhancement is performed by 

nonlinear transformation. With the first and second derivatives, 

the precise location of the QRS complex is not always 

guaranteed: sometimes the beginning of this complex is located 

and other times the end, seeing that the QRS complex frequency 

band changes from individual to other and for different beats of 

same individual.  

Some segmentation algorithms have been developed to 

exploit all information on the different pathways as in [5]. These 

algorithms, based on the calculation of the normalized integral 

are highly sensitive to fluctuations of the baseline and to noise. 

As well as, in most cases, one quality derivation is disposed. 

In [6], a matched filtering technique is applied to improve 

the performance of QRS detectors using an artificial neural 

network approach. The modeling of low-frequency is made by 

ANN based adaptive filter and for detection of QRS complex 

the residual signal is filtered by a matched linear filter.  

The dECG signal (the derivate of ECG) as presented in [7] 

is used to analyze the QRS complex.  This derivate suppresses P 

and T waves because it is based on the wave gradient which is 

greater in the QRS-region than in the non-QRS region. But this 

method remains difficult to apply in case of waves having high 

frequency noise.  

To implement an efficient ECG delineation algorithm, the 

extraction of fiducial points that represent the distinctive traits 

of individual is still a big challenge. In this paper, we proposed a 

new method for ECG waves detection based on the Ensemble 

Empirical Mode Decomposition. In fact the EEMD is adopted to 

decompose the signal into a set of IMFs which are used for the 

singularity detection. The performance is approved using 

manually annotated databases: MIT-BIH Arrhythmia [12] and 

QT [13].  

 

2. Ensemble Empirical Mode Decomposition 
 

Huang et al. [14] have proposed the empirical mode 

decomposition method. This method addresses the problem of 

non-stationary signals analysis. Unlike time-frequency 

representations and wavelet, the EMD decomposition is intrinsic  
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Fig. 1. Description of the adopted algorithm 

 

to the signal. It decomposes a complex in several modes: 

intrinsic mode function (IMF). These IMFs are simple 

oscillations with zero mean. The EMD technical performs 

decomposition into sub-bands very close to what would be 

obtained with wavelet analysis (multiresolution). Indeed, it 

explores the signal from the higher frequencies to the lower 

frequencies. However, this technique suffers from the problem 

of fusion or mixing mode that is a bank of self-adaptive filters 

which does not decompose any signal. This problem was 

resolved by new proposal version of EMD which is the 

ensemble empirical mode decomposition EEMD.  

Given a signal x(t), its principle is the following [15]:  

1. We generate Ne Gaussian white noise realizations with the 

same variance i
2, 1< i <Ne 

2. We calculate the noisy signal for each realization,  
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3. We extract the N IMFs of this noisy signal using the original 

EMD method. The Ne realizations give access to Ne noisy 

signals which allow the extraction of Ne sets of N IMFs: 

IMFki(t), 1  k  N and 1 iNe. The IMFs of EEMD method 

are then the average of these Ne sets of N IMFs. 
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3. Approach Description and Implementation 
 

The adopted approach is based on ensemble Empirical Mode 

Decomposition for ECG feature extraction. This choice relies on 

the fact that the IMFs resulting from the decomposition have a 

similar structure to QRS complex in time scale domain. In order 

to ensure the presence of low frequency components signal, 

decomposition is done in ten levels. In fact the reconstructed 

wave is formed by an appropriate set selection of IMFs. Fig. 1 

illustrates the different procedures followed during detection. 

First, the original signal is decomposed by EEMD technique 

into IMFs as shown in Fig. 2. Then a suitable choice of the 

coefficients is made for R peak detection. Once the R point is 

determined, four IMFs are identified for Q and S peak detection. 

Finally the relevant coefficients are selected for P and T peak 

detection.   

 

 

 

3.1. R Peak Detection  
 

The robust detection of QRS complex constitutes the 

prerequisite for any ECG signal analysis. A good detection of 

this complex requires a better selection of IMFs.  

 

 
 

Fig. 2. IMFs obtained by EEMD for levels 1-10 

 

The first point to be determined is the R peak which is 

manifested by its amplitude. Indeed, once the R peaks are 

identified, the heart rate can be calculated and various anomalies 

are detected. The obtained IMFs as shown in Fig. 2, have 
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arranged from low to high level. As we can see, the oscillations 

in the first IMFs are primarily designed for the QRS complex 

which is propagated in the high frequency bands. In fact the 

IMFs 1, 2 and 3 are used to delineate the QRS complex 

specifically the R-peak. 

A function ƒ1 is determined as follows: 

 

                    321ƒ1 IMFIMFIMF              (3) 

 

The representation of this reconstructed wave illustrated in 

Fig. 3 shows that the QRS region is captured. However, it is 

difficult to correctly locate the R peak view the presence of 

oscillations characterized by peaks with varying amplitudes. In 

order to eliminate these fluctuations another function ƒ2 is 

calculated as follows:     
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 As shown in Fig. 4, the modulus of f1×f2 is taken. It is clear 

that the oscillations are suppressed and the QRS complex 

appears more closely spaced in time.  

 

 
 

Fig. 3. Original signal and plot of ƒ1=IMF1+IMF2+IMF3 

 

 
 

Fig. 4. Original signal and plot of modulus of ƒ1×ƒ2 
 

 Hence the R waves are correctly identified as maximum 

amplitudes points knowing that no pretreatment is applied to the 

original ECG signal. The detection results for a healthy subject 

and with pathology are illustrated in Fig. 5.   

 

3.2. Q and S Peaks Detection 
 

After locating the R peak, it comes to detect Q and S points 

in order to identify the complete QRS complex. Commonly 

these two waves have low amplitude and are propagated in the 

mid-high-frequency bands. Oscillatory models in the first 

coefficients indicate a link between these models and the 

complex.  

 

 
(a) 

 
(b) 

 

Fig. 5. Detection of R peaks using MIT-BIH Arrhythmia 

Database: (a) Tape 101, (b) Tape 107: paced beats 

 

For this the IMFs 1 to 4 are preserved such as a function ƒ3 

is calculated as follows: 

 

        4321ƒ3 IMFIMFIMFIMF           (5) 

  

Fig. 6 illustrates the representation of the reconstruction 

wave. As shown in this figure, the S point is identified as the 

local minimum just to the right of the R peak while the Q point 

is identified as the minimum just to the left of the peak R. 

 

3.3. P and T Peaks Detection 
 

P and T waves delineation is important for medical 

interpretation of ECG signal. In fact, the energies of these two 

waves are essentially at the level of IMFs 5, 6 and 7 according 



to ECG power spectrum. But, the baseline drift is serious at 

IMF7, so IMFs 5 and 6 are selected to detect P and T points. 

The reconstructed wave is determined by the following 

expression: 

 

                     65ƒ4 IMFIMF                         (6) 

  

In Fig. 7, a plot of function ƒ4 is shown. Thus, the T wave is 

identified as the local maximum following the QRS complex 

while the T wave is identified as the maximum preceding the 

complex.  

 

 
 

Fig. 6. Original signal and plot of 

ƒ3=IMF1+IMF2+IMF3+IMF4 

 

 
 

Fig.7. Original signal and plot of ƒ4=IMF5+IMF6 

 

4. Results and Analysis 
 

As there is no predefined rule to extract the peak of ECG 

waves, the evaluation of the delineator is done by manually 

annotated databases. For these purposes, the signals exploited in 

this study are taken from some easily available databases such as 

QT and MIT-BIH Arrhythmia Databases. 

The MIT-BIH arrhythmia database contains 48 records 

obtained from 47 subjects studied by the BIH arrhythmia 

laboratory. The recordings are sampled at 360 Hz per channel 

with a resolution of 11 bits over a range of 10 mV. Two 

cardiologists have independently annotated each 

electrocardiogram. The QT database includes recordings which 

have been selected to represent a wide variety of QRS and of 

morphologies. It actually contains 105 records of fifteen minutes 

sampled at 250 Hz. MITDB and QTDB are used for evaluating 

the QRS detection and the QTDB for evaluating the waveform 

boundary. The manually determined values are compared with 

the measured values and the measurement accuracy is 

calculated.  

The reliability of the proposed method is evaluated by the 

sensitivity (Se), which represents the ability to correctly detect 

beats, and the detection error rate (DER), which expresses the 

accuracy of the system, and the positive predictivity (P+) which 

is the discriminability between true and false beats. These 

parameters are defined as follows:  
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Where TP means the number of true positive detections, FN is 

the number of false negative detections and FP is the number of 

false positive misdetections.  

The detection performance on the QT database and MIT-

BIH arrhythmia database obtained by our QRS detector and 

others published detectors are presented in Table I and II. It 

should be noticed that our method has a higher sensitivity and 

positive predictivity in comparison to other delineator. It attains 

Se=99.95% and P+=99.92% (0.13% of DER) for the first 

database. The performance in the second database is 

Se=99.95%, P+=99.88% and DER=0.16% over 109521 beats. 

In fact, the proposed delineator performs well for all signals 

from the two databases. Its performance in QRS complex 

detection is high as it provides 100% efficiency in most cases.   

Table 3 shows the validation of the proposed EEMD-based 

approach on the QT database. In this table, the results of P-

wave, QRS edges and T-wave detection are presented. The 

delineation performance proves that our algorithm can detect 

with excellent sensitivity the P and T waves in the ECG signals: 

Se=99.92% for P waves and 99.89% for T waves, and can 

delineate them with low errors: DER=0.16% for P waves and 

0.24% for T waves.     

The comparison of our results with those of known prior 

works in Table 4 allows to observe that our method outperforms 

the others clearly in all waves delineation. It provides a reliable 

and accurate detection of ECG characteristic. In fact, the 

sensitivity and the positive predictivity values for the P points: 

Se=99.92%, P+=99.90% are higher than in [5,8,10,18]; the 

same applies to the results of T points: Se=99.89% and 

P+=99.86% .  

 Finally, the proposed system could suitably delineate the 

various morphologies of QRS, P and T waves presented in the 

MIT-BIH and QT databases. Moreover the algorithm presents 

mathematical simplicity and low computational cost.  

 

5. Conclusion 
 

The proposed method provided a new delineation algorithm 

of ECG events. It investigated the EEMD techniques for ECG 

peaks detection using some conventional databases including 

MITDB, QTDB. This approach is based on the appropriate 

choice of IMFs for accurate detection.  



Table 1. Performance comparison of previously QRS detection algorithms on MIT/BIH arrhythmia database 
 

QRS detector # annotations TP FP FN DER(%) Se(%) P+(%) 

This method 109521 109463 136 58 0.16 99.95 99.88 

Pan et al. [3] 109809 109532 507 277 0.71 99.75 99.54 

Hamilton et al. [4] 109267 108927 248 340 0.54 99.69 99.77 

Martinez et al. [8] 109428 109208 153 220 0.34 99.80 99.86 

Li et al. [9] 104182 104070 65 112 0.17 99.89 99.94 

Chaffari et al. [10] 109428 109327 129 101 0.21 99.91 99.88 

Chaffari et al. [16] 109428 109215 160 213 0.34 99.80 99.85 

Moody et al. [17] 109428 107567 94 1861 1.79 98.30 99.91 

 

Table 2. Performance comparison of previously QRS detection algorithms on QT database 
 

QRS detector # annotations TP FP FN DER(%) Se(%) P+(%) 

This method 86892 86851 68 41 0.13 99.95 99.92 

Martinez et al. [8] 86892 86824 107 68 0.20 99.92 99.88 

Ghaffari et al. [10] 86892 86845 79 47 0.15 99.94 99.91 

Ghaffari et al. [16] 86892 86819 94 73 0.19 99.92 99.89 

Moody et al. [17] 86892 84458 459 2434 3.33 97.2 99.46 

 

Table 3. Fiducial points detection results on QT database 
 

Fiducial points Se(%) P+(%) DER(%) 

R-wave 99.95 99.92 0.13 

Q-point 99.82 99.77 0.39 

S-point 99.75 99.68 0.56 

P-wave 99.92 99.90 0.16 

T-wave 99.89 99.86 0.24 

 

Table 4. Performance comparison of delineation algorithms on 

QT database 
 

Method 
Accuracy 

parameters 
Ppeak Tpeak 

Our work Se(%) 

P+(%) 

99.92 

99.90 

99.89 

99.86 

Laguna et al. [5] Se(%) 

P+(%) 

97.7 

91.17 

99.0 

97.74 

Martinez et al. [8] Se(%) 

P+(%) 

98.87 

91.03 

99.77 

99.79 

Ghaffari et al. [10] Se(%) 

P+(%) 

99.46 

98.83 

99.87 

99.80 

Plesnik et al. [18] Se(%) 

P+(%) 

99.06 

94.87 

99.66 

99.66 

 

The results prove that the EEMD algorithm is very promising, in 

fact verifying our system with the QT Database gave the 

following results: 99.95% of Se for the QRS complexes, 99.92% 

for the P waves and 99.89 for the T waves and 99.92% of P+ for 

the QRS complexes, 99.90% for the P waves and 99.86 for the T 

waves. The performance of our ECG delineator proves to be 

more effective as compared to others detectors published. In our 

future work, we intend to explore the detected fiducial points for 

studies of beat classification and also for arrhythmia detection.  
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