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Abstract 
 

This study presents a Gaussian noise removal method using 

the improved trace-based approach for color images. The 

presented method employs partial differential equations 

(PDEs)-based approach including both smoothing 

(regularization) term and fidelity (data) term in the energy 

functional. So, the structure of the input image is well 

preserved during noise removal processes. Also, we estimate 

the standard deviation of Gaussian noise in the wavelet 

domain. In addition, due to the fact that the type of Gaussian 

noise is easily perceived via a selected block in a flat 

(homogeneous) region of the noisy input image, the presented 

method is considered as a semi-automated noise removal 

approach. The validity of the presented method is depicted 

via experimental results. 

 

1. Introduction 
 

Image noise is an undesirable effect that appears in random 

variations in intensities of a gray-level image or each channel 

component of a multi-valued image. Non-ideal sensor elements, 

any adverse environmental situation such as high temperature, 

and transmission and compression processes can cause a 

corruption as a kind of noise in the input image. Noises are 

usually evaluated in two main categories: additive and 

multiplicative. The most common additive noise types, which are 

frequently encountered in digital images, are Gaussian noise 

(sensor noise) and impulsive noise (transmission noise). A low-

pass filter (LPF) can be used for eliminating Gaussian noise, and 

a classical median filter can be used for removal of impulsive 

noise (salt and pepper noise). However, structure and texture 

information of the restored image may be inevitably blurred 

during noise removal processes. For this reason, there have been 

many approaches for image denoising in order to preserve both 

structure and texture information of the input image in the 

literature. 

In terms of PDEs, in the literature, many approaches have been 

developed to eliminate especially additive noises in the input 

image. Tikhonov [1] developed a linear and isotropic method 

based on Laplace equation, which is the most basic approach for 

noise reduction in gray-level images. Due to the fact that this 

method behaves as a LPF [2], it blurs edges of the input image. 

Therefore, Perona and Malik [3] included a weighting function to 

Laplace equation in order to preserve well edge information in the 

input image. As a result of this, diffusion is prevented by this non-

linear anisotropic method in the edge regions of the input image. 

However, this method may sometimes make the noise more 

evident instead of reduced noises, which is called inverse 

diffusion. Weickert [4] presented an anisotropic method that uses 

diffusion tensors based on the local features extracted from 

eigenvectors and eigenvalues related to the eigenvectors. Gilboa 

et.al. [5] proposed a nonlinear diffusion method for image 

denoising, which preserves both structure and texture information 

of gray-level images. Another study suggested by Gilboa and 

Osher [6] uses non-local linear diffusion operators for image 

regularization. Tschumperle and Deriche [7] presented a trace-

based anisotropic method for color image denoising. Due to the 

fact that this method reveals rounding effects in the sharp corners 

of the input image, Tschumperle improved it based on the line 

integral convolution in another study [8]. Gilboa proposed a total 

variation spectral approach for texture analysis and processing 

[9], where texture information may partially be considered as a 

type of noise.  

In this study, we present a robust method for removal of 

Gaussian noise from color images based on the trace-based 

approach including a fidelity term that assists preservation of the 

input image structure. Also, we estimate the standard deviation of 

Gaussian noise via the wavelet-based approach. 

In the following sections, we give some detailed information 

about additive noises and mention about removal of additive 

Gaussian noise from input images by employing PDEs-based 

method including both smoothing term and fidelity term. 

 

2. Additive Noise Removal 
 

A corrupted gray-level image with an additive noise is 

formulated as follows: 

 

 𝑓 = 𝑓0 + additive noise (1)  

 

where 𝑓: → ℝ is a noisy image and 𝑓0: → ℝ is an original 

image. Both are defined in a closed region  . 𝐱 = (𝑥, 𝑦) 

indicates image coordinates. Impulsive noise has the following 

statistical model: 

 

𝑃X(𝑥) = {
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑤, 𝑥 = a near white value
𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑏,          𝑥 = a near black value 
0,                                 otherwise                         

 (2)  

 

where X is a random variable. Gaussian noise has the probability 

distribution function (PDF) shown as below: 

 

 𝑃X(𝑥) =
1

√2𝜋𝜎
𝑒

−
(𝑥−𝜇)2

2𝜎2  (3)  

 

where 𝜎2  is the noise variance and 𝜇  is the mean value of 

Gaussian noise. 

Types of additive noises are able to be estimated by a selected 

flat region of the input image (See Figs. 1a-c and 2a-c). It is 

depicted in Fig. 1c that salt and pepper noise is easily eliminated 

in the flat region by using a median filter because this noise type 



 

 

has two pick values in the near minimum and maximum 

intensities of the input image. However, this filter may blur non-

flat regions, especially in image edges. In this case, energy 

functional based on PDEs is given for salt and pepper noise as 

follows [10, 11]: 

 

 𝐸1(𝑢, 𝑓) = ∫ (|∇𝑢| + |𝑓 − 𝑢|)𝑑𝑥𝑑𝑦


 (4)  

 

where 𝑢: → ℝ  is an evolved (resulting) image. ∇ ∙ =
(𝜕 ∙ 𝜕𝑥,⁄  𝜕 ∙ 𝜕𝑦⁄ )𝑇  is the gradient operator. Energy fuctional 

𝐸1(∙)  can be written based on the   formulation, which is a 

general form, as follows: 

 

𝐸1(𝑢, 𝑓) = ∫ ((|∇𝑢|) + |𝑓 − 𝑢|)𝑑𝑥𝑑𝑦


 (5)  

 

where (|∇𝑢|) = √1 + |∇𝑢|2  is set for preventing the 

singularity while the equation is evolved [5]. 

If Eq. (5) is solved based on the Euler-Lagrange (E-L) method, 

the following Eq. (6) is obtained: 

 

 −
𝜕𝐸1

𝜕𝑢
= div (′(∙)

∇𝑢

|∇𝑢|
) + sign(𝑓 − 𝑢) (6)  

 

where div(∙) is divergence and sign(∙) is the sign function. The 

smoothing term is based on the total variation approach and the 

fidelity term uses 𝐿1 norm due to the fact that salt and pepper 

noise is easily detected using the sign function. Namely, each 

pixel value in the input image is not corrupted by salt and pepper 

noise, where sign change of subtraction between the pixel value 

of the input image 𝑓 and the evolved image 𝑢 is zero. Also, if the 

fidelity term is not included in the energy functional, the evolved 

image has a constant value at the convergence (𝑡 → ∞). On the 

other hand, Gaussian noise corrupts almost all pixel values in the 

input image as seen in Fig. 2c. Therefore the fidelity term uses 𝐿2 

norm in the energy functional as follows (Restored image is 

shown in Fig. 2d as well): 

 

𝐸2(𝑢, 𝑓) = ∫ (|∇𝑢| +
1

2
 × (𝑓 − 𝑢)2) 𝑑𝑥𝑑𝑦



. (7)  

 

If energy fuctional 𝐸2(∙) is written based on the  formulation,  

 

𝐸2(𝑢, 𝑓) = ∫ ((|∇𝑢|) +
1

2
× (𝑓 − 𝑢)2) 𝑑𝑥𝑑𝑦



 (8)  

 

is obtained. Energy fuctional 𝐸2(∙) is minimized by E-L method 

as follows: 

 

 −
𝜕𝐸2

𝜕𝑢
= div (′(∙)

∇𝑢

|∇𝑢|
) +  × (𝑓 − 𝑢) (9)  

 

Since we are interested in Gaussian noise, we give more detailed 

information about Gaussian noise removal. Here, due to the fact 

that the mean value of 𝑓 is almost equal to the mean value of 𝑢, 

empricial noise variance 𝜎̂2 is updated at each iteration as 𝜎̂2 =
||−1 ∫ (𝑓 − 𝑢)2𝑑𝑥𝑑𝑦


. In this case,  is optimized as  

 =
1

||𝜎2 ∫ div (′(∙)
∇𝑢

|∇𝑢|
) (𝑢 − 𝑓)𝑑𝑥𝑑𝑦.



 (10)  

 

When   is converged, empricial variance 𝜎̂2  is equal to noise 

variance 𝜎2 . Note that this approach is not valid for salt and 

pepper noise [5].  

Eq. (8) is evolved using the iterative gradient descent method 

as follows: 

 

{

𝑢(𝑡 = 0; 𝐱) = 𝑓(𝐱)                                                    
𝜕𝑢

𝜕𝑡
= −

𝜕𝐸2

𝜕𝑢
= div (′(∙)

∇𝑢

|∇𝑢|
) +  × (𝑓 − 𝑢) 

 (11)  

 

where 𝑡 indicates time or scale. 

Finally the following equation is given based on the explicit 

diffusion scheme: 

 

 𝑢𝑛+1 = 𝑢𝑛 + 𝑑𝑡 × (𝜕𝑢 𝜕𝑡⁄ )𝑛 (12)  

 

where 𝑛 iteration count and 𝑑𝑡 is time step. Here, the time step is 

simply set to 𝑑𝑡 ≤ 0.25 for the CFL condition [5, 12]. 

 

 
 

Fig. 1. Image including additive salt and pepper noise with the 

noise density of d = 2% : a) Cameraman test image, b) selected 

block of flat region of the noisy image, and c) histogram (black 

bars) and PDF (green line) of the noisy block 

(a) (b) 

(c) 



 

 

 
 

Fig. 2. Image including additive Gaussian noise with the 

variance of 𝜎2 = 400 and the mean value of 𝜇 = 0: a) 

Cameraman test image, b) selected block of flat region of the 

noisy image, c) histogram (black bars) and PDF (green line) of 

the noisy block, and d) restored image 

 

3. Presented Method 
 

Let 𝐟(𝑓1, 𝑓2, 𝑓3): → ℝ3 ,  𝐟0: → ℝ3  and 𝐮: → ℝ3 

represent a noisy color input image, an original color input image 

and an evolved color image, respectively. In the presented 

method, we add a fidelity term to the trace-based method [7] in 

order to obtain the resulting image properly.  

First, in the trace-based method, the structure tensor is 

obtained for each pixel in the color image as follows: 

 

 𝐆 = ∑ ∇𝑢𝑖

3

𝑖=1

∇𝑢𝑖
𝑇 =  [

𝑔11 𝑔12

𝑔21 𝑔22
] (13)  

 

where 𝑖 , 1 ≤ 𝑖 ≤ 3 , indicates each channel component of the 

color image and ∇𝑢𝑖 = [𝜕𝑢𝑖 𝜕𝑥⁄  , 𝜕𝑢𝑖 𝜕𝑦⁄ ]𝑇 . Mutually 

perpendicular eigenvectors 𝜑±  and two positive eigenvalues 𝜆± 

related to the eigenvectors are computed from the structure tensor 

matrix as below:  

 

𝜑± ⫽ [2𝑔12, 𝑔22 − 𝑔11 ± √(𝑔11 − 𝑔22)2 + 4𝑔12
2 ]

𝑇
and 

 

𝜆± = (𝑔11 + 𝑔22 ± √(𝑔11 − 𝑔22)2 + 4𝑔12
2 ) 2⁄ . 

 

Positive eigenvalues 𝜆±  give the following information for the 

current pixel: 

i. If 𝜆+ ≅ 𝜆− ≅ 0, then it may be in a flat region, 

ii. If 𝜆+ ≫ 𝜆−, then it may be in an edge region, 

iii. If 𝜆+ ≅ 𝜆− ≫ 0, then it may be in a corner region. 

Also, the structure tensor can be smoothed by the LPF such as 

Gaussian filter g𝜎  with standard deviation 𝜎  in order to obtain 

more robust results: 𝐆σ = 𝐆 ∗ g𝜎 , where ∗  is the convolution 

operator. 

Secondly, Tschumperle and Deriche [5] use the diffusion 

tensor in order to remove noises from color images: 

 

 𝐓 = 𝑠−(𝜆+, 𝜆−)𝜑−𝜑−𝑇 + 𝑠+(𝜆+, 𝜆−)𝜑+𝜑+𝑇
 (14)  

 

where 𝑠±: ℝ2 → ℝ are two functions and are set for the noise 

removal as follows: 

 

𝑠−(𝜆+, 𝜆−) = (1 + 𝜆+ + 𝜆−)−𝑎1 and  

 

𝑠+(𝜆+, 𝜆−) = (1 + 𝜆+ + 𝜆−)−𝑎2 , where   𝑎1 < 𝑎2.  

 

If the noise removal process is done  

i. only in the direction of eigenvector 𝜑− , it is called an 

anisotropic smoothing, 

ii. in the flat region, it is called an isotropic smoothing. In 

this case, 𝐓 ≅ 𝕀  is obtained as a unit matrix and the trace-

based method behaves as Laplace equation.  

Lastly, the other process steps for the presented method are 

given as follows:  

 

 𝐸3 = ∫ ((|∇𝐮|) +
1

2
 × (𝐟 − 𝐮)2) 𝑑𝑥𝑑𝑦



 (15)  

 

 =
1

3||𝜎̃2 ∑ ∫  trace(𝐓𝐇𝑖)(𝐮 − 𝐟)𝑑𝑥𝑑𝑦


3

𝑖=1

 (16)  

 

(a) (b) 

(c) 

(d) 



 

 

 {
𝐮(𝑡 = 0; 𝐱) = 𝐟(𝐱)                                   
∂𝐮

∂𝑡
=  trace(𝐓𝐇𝑖) + × (𝐟 − 𝐮)          

 (17)  

 

where trace(∙) represents trace of the matrix and 𝐇𝑖  is Hessian 

matrix: 

 

𝐇𝑖 = [
𝜕2𝑢𝑖 𝜕𝑥2⁄ 𝜕2𝑢𝑖 𝜕𝑥𝜕𝑦⁄

𝜕2𝑢𝑖 𝜕𝑦𝜕𝑥⁄ 𝜕2𝑢𝑖 𝜕𝑦2⁄
]. 

 

In the presented method, the standard deviation of Gaussian 

noise is computed based on the wavelet transform. After the noisy 

color input image is converted into a gray-level image, the 

wavelet transform of the image is computed. And then the 

standard deviation of Gaussian noise is estimated as follows: 

 

 𝜎̃ ≅ median(|𝐷|) 0.6745⁄  (18)  

 

where 𝐷  is the diagonal detail coefficient of the result of the 

wavelet transform in the first decomposition level. 

In order to summarize the presented method, we depict a 

flowchart as in in Fig. 3. 

 

 
 

Fig. 3. Flowchart of the presented method 

 

4. Experimental Results 
 

We test the validity of the presented method on Lenna and 

Pepper color images. Both of the test images are in the size of 

256 × 256 . The artificial Gaussian noise with the standard 

deviation of  𝜎 = 20 and mean value of 𝜇 = 0 is added to both 

test images. The iteration count, the standard deviation of 

Gaussian filter g𝜎 for the structure tensor smoothing, time step 

and diffusion limiters are respectively set to 𝑛 = 100, 𝜎 = 0.5, 
dt = 0.2, and 𝑎1 = 0.5 and 𝑎2 = 0.9 for the trace-based method. 

In addition, in the presented method, the loop is terminated based 

on the error, 𝜖 ≤ 0.1, as a difference between the results of the 

current iteration and the previous iteration. 

The results obtained from the test images are depicted in Figs. 

4a-d and 5a-d. Although the presented method removes fine 

details more compared to the trace-based method [7], better visual 

results of the presented method are generated than the ones of the 

traced-based method are generated as shown in Figs 4c-d and 5c-

d. In addition to this, the quantity value, i.e. PSNR value, obtained 

from the presented method is better than the trace-based method. 

In the presented method, standard deviations are also estimated 

by the wavelet transform as 𝜎̃ ≅ 20 ± 0.7. 

Mean square error (MSE) and peak signal to noise ratio 

(PSNR) are computed as follows: 

 

 

MSE =
1

3||
∑ ∫ (𝑢𝑖 − 𝑓0𝑖

)
𝟐

𝑑𝑥𝑑𝑦


3

𝑖=1

 

PSNR = 20 log10 (
255

MSE
) 

(19)  

 

The source code was written in Microsoft Visual C++ platform 

and run on a PC with an Intel® Core™ i5-3470 3.20 GHz CPU 

and with 8 GB of RAM. 

 

5. Conclusions 
 

We present a PDEs-based method for Gaussian noise removal 

from color images. The generated results based on the presented 

method seem promising. In the future study, we will extend the 

presented method to estimate and to remove both additive 

impulsive and Gaussian noises. In addition to this, the presented 

method can be applied on the noisy color images having only 

structure information. So, we will add some approaches to the 

presented method in order to take both structure and texture 

information of the noisy image into consideration. 
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Fig. 4. Noise removal results for Lenna test image: a) Original 

image, b) corrupted image by Gaussian noise with 𝜎 = 20 and 

𝜇 = 0, c) result of trace-based method (PSNR = 29.65 dB) [7], 

and d) result of presented method (PSNR = 30.40 dB) 

 

 

 

 

 
 

Fig. 5. Noise removal results for Pepper test image: a) Original 

image, b) corrupted image by Gaussian noise with 𝜎 = 20 and 

𝜇 = 0, c) result of trace-based method (PSNR = 29.71 dB) [7], 

and d) result of presented method (PSNR = 30.57 dB) 

(a) (b) 

(c) (d) 
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