
PI-V plus Sliding Mode Based Cascade Control of Magnetic Levitation 
 

Yakup Eroğlu    ,    Günyaz Ablay 

 
Department of Electrical & Electronics Engineering, Abdullah Gül University, Kayseri, Turkey 

yakup.eroglu@agu.edu.tr    ,     gunyaz.ablay@agu.edu.tr 
 

 

Abstract 
 

Magnetic levitation systems are able to provide frictionless, 

reliable, fast and economical operations in wide-range 

applications. The effectiveness and applicability of these 

systems require precise feedback control design. The 

position control problem of the magnetic levitation can be 

solved with robust current control approaches. A cascade 

control approach consisting of PI-velocity plus sliding mode 

control (PI-V plus SMC) is designed to render high control 

performance and robustness to the magnetic levitation. It 

will be shown that the SMC designed for electrical part of 

the plant (current controller) is able to eliminate the effects 

of the inductance related uncertainties of the 

electromagnetic coil of the plant.  Experimental results are 

provided to validate the efficacy of the approach. 

 

1. Introduction 
 

Magnetic levitation technology provides contactless 

movement and removes friction problem. It has been used in 

many industrial systems including in high-speed maglev trains, 

frictionless bearings, electromagnetic cranes, levitation of wind 

tunnel models, vibration isolation of sensitive machinery, 

levitation of molten metal in induction furnaces, rocket-guiding 

projects, levitation of metal slabs during manufacture and high-

precision positioning of wafers in photolithography [1]–[8]. This 

technology is able to serve reliable and high-speed operations 

with the use of feedback controllers. On the other hand, it is 

difficult to provide high control performance with standard 

controllers for the magnetic levitation systems because of their 

open-loop unstable and highly nonlinear dynamics, and 

existence of parameter uncertainties due to inductance of the 

electromagnetic coil.  

Recently, many works have been reported for controlling 

magnetic levitation in the literature. The designed control 

techniques include feedback linearization based controllers 

(including input-output and  input-state linearization techniques) 

[4], [6], [9]–[11], linear state feedback control design [6], [12], 

the gain scheduling approach [13], observer-based  control [5], 

neural network techniques [14], sliding mode controllers [8], 

[15], [16], backstepping control [17], model predictive control 

[18] and PID controllers [19]. In short, many known linear and 

nonlinear control methods were designed for magnetic levitation 

systems. In the linear controller designs, the approximate linear 

model found by perturbing the system dynamics about a desired 

operating point is used, and thus, the controllers are usually 

valid only around the operating point. The performance of the 

linear controllers can be improved with some kind of gain 

scheduling procedure to change operating points, but the 

stability may not be guaranteed. Since the governing differential 

equations are highly nonlinear, the nonlinear controllers seem 

more attractive. However, many nonlinear control designs need 

exact knowledge about the plant nonlinearities to ensure a good 

performance. The modeling and parameter uncertainties in the 

magnetic levitation plant model makes practical 

implementations of the nonlinear controllers difficult.  

In this work, a practical cascade control approach is 

considered. The cascade control allows us to design a high gain 

inner loop (current) controller to deal with the effects of plant 

disturbance and uncertainty. Since the plant is composed of 

mechanical and electrical parts, the cascade controller can give a 

good performance. For the mechanical part of the system, a PI 

plus velocity controller is designed for tracking control of the 

position of the plant. For the electrical part which is much faster 

than the mechanical part, a sliding mode controller (SMC) is 

designed for ensuring high performance current controller. The 

SMC has ability to render robustness in the presence of 

inductance uncertainties. The effectiveness of the method is 

demonstrated with numerical simulations and experimental tests. 

It is shown that the PI-V plus SMC based cascade controller can 

provide highly satisfactory tracking performance with a small 

tracking error for the magnetic levitation system in the existence 

of coil inductance uncertainty. 

This paper is organized as follows: Section 2 provides a 

background on magnetic levitation system. Controller design 

strategy is given in Section 3, and application results are given 

in Section 4. Conclusion of the study is provided in Section 5. 

 

2. Magnetic Levitation and Modeling 
  

 

Fig. 1.  Schematic diagram of a single-axis magnetic 

levitation system.  

 

Magnetic levitation system is used to levitate a steel ball in 

air due to the electromagnetic force created by an electromagnet.  

The system consists of an electromagnet, a steel ball, a ball post 

and a ball position sensor. A schematic diagram of the magnetic 

levitation system used in the experimental studies is shown in 

Fig. 1. The entire system is encased in a rectangular enclosure 

which contains three distinct sections. The upper section 

contains an electromagnet, made of a solenoid coil with a steel 

core. The middle section consists of a chamber where the ball 

suspension takes place. One of the electromagnet poles faces the 
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top of a black post upon which a one inch steel ball rests. A 

photo sensitive sensor embedded in the post measures the ball 

elevation from the post. The last section of the system houses 

the signal conditioning circuitry needed for light intensity 

position sensor. The ball is only controlled through vertical x-

axis. The attraction force is controlled by the computer 

controlled electromagnet mounted directly above the levitation 

ball. The photo detector consists of an NPN silicon 

photodarlington. The electromagnet consists of a tightly wound 

solenoid coil made of 2450 turns of 20 AWG magnet wire. 

Electromagnet coil input supply is ±24V with a maximum 3A 

coil current. The data acquisition board is a successive 

approximation type, 12-bit analog and digital conversion board 

capable of 4 kHz sampling. In this work, the controllers are 

implemented at a sampling rate of 1 kHz. The entire system is 

decomposed into two subsystems, namely mechanical and 

electrical subsystems, as seen Fig. 2. The coil current is adjusted 

to control the ball position in the mechanical system, whereas 

the coil voltage is varied to control the coil current in the 

electrical system. Thus, the voltage applied to the electromagnet 

indirectly controls the ball position. In the following 

subsections, we obtain the nonlinear mathematical model of the 

system by using Fig. 2. 

 

   
Fig. 2.  Dynamical modeling of the magnetic levitation system. 

 

Table 1. Plant parameters 

Symbol Description  Value 

Lc Coil inductance 412.5mH 

Rc Coil resistance 10Ω 

Rs Current sense resistance 1Ω 

Km Electromagnet force constant 6.53x10-5 Nm2/A2 

Mb Steel ball mass 0.068kg 

KB Position sensor sensitivity 2.83x10-3m/V 

Nc Number of turns in coil wire 2450 

 

2.1. Modeling of the Mechanical Part 
 

Using the notation and conventions given in Fig. 2, the 

mechanical model of the plant can be obtained. By applying 

Newton’s second law of motion to the ball, the force balance 

equation of the ball is given with the following second-order 

model: 

 

b b b cM x M g F    (1) 

 

where    is the air gap (in m), Mb is the mass of the ball (in kg), 

g is the gravitational constant (in m/s2) and Fc is the force 

generated by the electromagnet (in N). Attractive force 

generated by the electromagnet is given by [20] 
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where Km is the electromagnet force constant (in Nm2/A2) and Ic 

is the coil current (in A). At equilibrium point, all the time 

derivatives are set to zero. 
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From Eq. (3), the coil current at equilibrium position, Ic0 , can be 

expressed as a function of xb0 and Km. 
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The nominal coil current Ic0 for the electromagnet ball pair can 

be obtained at the system’s static equilibrium. The static 

equilibrium at a nominal operating point (xb0, Ic0) is 

characterized by the ball being suspended in air at a stationary 

point xb0 due to a constant attractive force created by Ic0. 

 

2.2. Modeling of the Electrical Part 
 

 By assuming that the coil inductance is constant around the 

operation point and applying Kirchhoff’s voltage law to the 

electromagnet (RL circuit in Fig. 2), the electrical model of the 

magnetic levitation can be written as 

                           
1c c s

c c
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dI R R
I V
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
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where Ic is the coil current, Lc is the coil inductance (in H), Rc is 

the coil resistance(in Ω), Rs is the current sense resistance (in Ω) 

and Vc is the supply voltage (in V). The transfer function of the 

electrical circuit can be obtained by applying Laplace transform 

to Eq. (5) 

                               
( )

( )
( ) 1

c c
c

c c

I s K
G s

V s s
 


    (6) 

where    
 

     
 is the dc gain, and    

  

     
 is the time 

constant of the electrical subsystem. In nature, the electrical 

subsystem is much faster than the mechanical subsystem. All 

system parameters are given in Table 1. 

 

2.3. Linearization of the Plant Model 
 

In order to analyze the magnetic levitation, the system can be 

linearized around equilibrium point (xb0, Ic0), the point at which 

the system will converge as time tends to infinity. Applying 

Taylor series approximation about equilibrium point (xb0, Ic0) to 

Eq.(1), we get 
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Substituting Eq. (4) into (7), we get 
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Thus, applying Laplace transform in Eq. (8), transfer function of 

linearized system around the operation point is obtained as 
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where            and           . In this work, it is 

assumed that the operating point of the system is xb0= 6mm and 

cR

cL

cV

sV

sR

bx

cF

bM g

bM

bV

0bx

cI



Ic0= 0.86A. The open-loop transfer function of the system is of 

type zero and second-order. The two open-loop poles of the 

system are located at       which indicates that the open 

loop system is unstable due to location of poles on the right half 

of the s-plane. Thus, a feedback controller must be designed to 

stabilize the system.  

 

3. Controller Design 
 

PI-V plus sliding mode based cascade control is considered 

to apply the magnetic levitation system. The proposed control 

scheme is shown in Fig. 3. The PI-V controller will be designed 

for controlling the outer position loop, while the sliding mode 

controller will be designed to control the inner coil current. 

SMC is designed for the electrical part of the system because of 

its robust and fast response characteristics.  

 

 
 

Fig. 3.  A cascade control scheme for the magnetic levitation 

system. 

 

3.1. PI-V Position Controller 
 

The PI-V controller will be designed and tuned with pole 

placement by using convenient specifications to control the ball 

position of the mechanical part. In the controller design, the 

velocity controller is designed to enhance the transient 

performance and a setpoint weighting is applied to the 

proportional controller to have a good steady-state response. The 

objective of the control strategy is to regulate and track the ball 

position in mid-air. The desired performance requirements are 

taken as (1) percentage overshoot  5%, (2) maximum settling 

time  0.3s, for the position control.  

To achieve the desired performance requirements, consider 

the characteristic equation of third order transfer function 
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where damping ratio should be ζ=0.69 and natural frequency is 

found as ωn=19.3 rad/s. The third pole location is selected as 

p0=40 by taking into account the feature [p0<dominant pole].  

Now, the PI-V with set point weighting is designed by 
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The Laplace transform of Eq. (11) is 
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Hence, the closed-loop transfer function can be written as 
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with the assumption ( ) ( )r cI s I s  due to inner current loop 

control, namely, 
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Thus, the closed loop position transfer function is  
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Substituting Eq. (12) into Eq. (15), we obtain  
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Controller gains can be obtained by comparing the characteristic 

equation of closed-loop system (16) with the desired 

characteristic equation (10). Three separate gains are used in PI-

V controller design. The objective of set pointing action is to 

compensate for the gravitational bias. When the PI-V controller 

compensates for dynamic disturbances around the linear 

operating point (xb0, Ic0), the setpoint weighting eliminates the 

changes in the force created due to gravitational bias. 

 

3.2. Sliding Mode Current Controller 
 

Sliding mode controller is considered to control the coil 

current due to its fast response and robustness features. Since the 

coil inductance is a function of ball position, but it is taken as 

constant to simplify analysis and designs, there exists a 

parameter uncertainty. The effects of inductance related 

uncertainties can be minimized by designing a high-gain SMC 

for controlling electrical part of the system current.  

To design SMC, first a sliding surface, s, can be designed as 

 

                                     r cs I I          (17) 

 

Thus, the time-derivative of (17),   , is obtained as 
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To achieve a sliding mode, i.e.,       , the voltage Vc as the 

control input of the magnetic levitation can be designed as [21], 

[22] 
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The saturation function, sat(.), is used to eliminate chattering on 

the system output. The stability of the SMC (or reachability 

condition      ) must be satisfied for selected appropriate 

gains,   and  . A detailed Lyapunov based stability and 

robustness analysis can be found in our previous studies (see 

[21], [22]). Since a boundary layer approach (sat(.) function) is 

used in the controller design, the trajectory reaches a small 

ultimate bound set in finite time. This means that the tracking 

error stays around the origin, but usually not in the origin. The 

appropriate gain values can be obtained via simulation. 

 

4. Results 
 

The experimental hardware-in-the-loop (HIL) test and 

numerical simulation results of the proposed cascade control 

scheme for the magnetic levitation are provided in this section. 

In both numerical and experimental studies, MATLAB/Simulink 

programs are used. The control parameters are obtained based 

on desired performance requirements and verified with 

numerical simulations as kp=-199.7, ki=-633.2, kv=-2.82 and 

bsp=0.35 for PI-V controller with set-point weighting, and 

α=150 and β=50 for the SMC. 
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4.1. Numerical Simulations 
 

In numerical simulations, it is assumed that the ball position 

varies from 8 to 10 mm ramp signals with a frequency of 

0.25Hz. From the desired performance requirements (see 

Section 3.1), the controller should accomplish a desired      

square wave position set point. 

 

 
Fig. 4.  Ball position trajectory 

 

 
Fig. 5.  Coil current response 

 

The tracking performance of the cascade PI-V plus SMC 

controller is illustrated in Figs. 4-8. It is seen in Fig. 4 that the 

controller provides a desired tracking performance with a little 

overshoot (around 2%). Figure 5 shows the response of the SMC 

current controller in which the coil current perfectly tracks the 

desired current, which makes the ball to follow the reference 

trajectory. The control signal, i.e., coil voltage, is shown in Fig. 

6. Smooth voltage and current signals are observed in the 

simulations. The tracking error, which is the difference between 

actual trajectory and reference trajectory, is shown in Fig. 7. The 

tracking error has little short transient response which satisfies 

the required settling time, and about 0.2mm (2% overshoot) in 

simulations. Fig. 8 shows that the sliding surface, s, goes to zero 

in a short time and stays around zero for all subsequent times. 

 

 
Fig. 6.  Coil voltage response 

 
Fig. 7.  Position tracking error 

 
Fig. 8.  Current tracking error 

 

4.2. Experimental Results 
 

To compare the numerical and experimental results, the 

similar position reference is applied. The experimental results 

are shown in Figs. 9-13. Figure 9 shows that the controller holds 

the ball during startup and follows the reference position 

trajectory thereafter. The small oscillations around the reference 

point are due to the effects of sampling, measurement error and 

noise. In addition, the ball sways right and left rather than 

staying vertically as the photo detector cannot exactly measure 

the ball position because of circularity of the ball. This can be 

solved with touching lightly to the ball by hand. In 6th second 

we touched the ball around 0.5 seconds to center the ball, and 

after that point, it can be seen that the tracking results are 

improved.  

 
Fig. 9.  Experimental ball position trajectory 

 

 
Fig. 10.  Experimental coil current response 

 

Figure 10 shows the response of the coil current. The SMC 

current controller eliminates the effects of inductance 

uncertainty and provides a highly satisfactory tracking 
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performance. The response of the coil voltage is shown in Fig. 

11. The average voltage supply is around 14V during steady-

state. The position tracking error is shown in Fig. 12. It is clear 

that the position error is limited about 0.2mm during steady-

state which satisfies desired requirements. The position error is 

decreased to 0.1mm after the light touch to the ball by hand. 

Figure 13 shows the sliding surface, s, (or current tracking 

error). It is seen that the sliding surface reaches zero in a short 

time and stays around zero thereafter. 

  
Fig. 11.  Experimental coil voltage response 

 
Fig. 12.  Experimental position tracking error 

 
Fig. 13.  Experimental current tracking error 

 

5. Conclusion 
A PI-V plus SMC based cascade controller is designed for 

feedback control of the magnetic levitation. Both numerical 

simulation and experimental test results are given to 

demonstrate the effectiveness of the controller. A high gain 

SMC is designed for current control of the magnetic levitation 

system in order to eliminate coil inductance originated 

disturbance and uncertainty. The results show that the method 

provides a highly satisfactory tracking control performance in 

the presence of coil inductance uncertainty.   
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