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Abstract
An analysis of the Linearly Tapered Slot Antenna (LTSA)
on a finite dielectric substrate has been developed by us-
ing A Method of Moments (MoM). An approximate closed
form Green’s function is obtained for the infinite dielectric
substrate. Galerkin type Method of Moments with RWG
basis functions are used in order to solve Electric Field In-
tegral Equation (EFIE) derived for the LTSA. Finite dielec-
tric substrate region is modelled by equivalent volume po-
larization currents existing in this region. The feed section
of the antenna is modelled with a pulse excitation. Modify-
ing the incident field using the polarization current density,
and solving for the antenna currents in air yields accurate
results without increasing the number of unknowns as in the
full-wave model. Comparisons of small and large LTSA pat-
terns with HFFS results are presented to demonstrate the
validity of the model.

1. Introduction
The Linearly Tapered Slot Antenna is a member of travel-

ling wave antennas and operates over a large bandwidth. LTSA
was first introduced by Gibson [1], and has become an impor-
tant element for the millimetre wave and microwave applica-
tions [2]. Janaswamy presented the first analytical solution for
the LTSA [4]. In the analysis, he approximated the antenna ta-
per step-wise and solved each section as an eigenvalue problem
for a slot line, to determine the aperture field up to a multiplica-
tive constant in each slot line section [5]. Enforcing the power
conservation principle then enables to determine the aperture
distribution, and the pattern of the antenna is obtained by using
equivalent magnetic currents in the presence of a perfectly con-
ducting half plane. Unfortunately, this method assumes conduc-
tors with infinite width and length, and it is particularly accu-
rate for long antennas (L >> 3λ). Later, Köksal and Kauffman
considered the actual geometry of the antenna and analysed LT-
SAs on a finite dielectric substrate by using MoM [6]. In this
work, LTSAs on a finite dielectric substrate is analysed by a
two-step MoM. Initially, approximate spectral-domain Green’s
functions for an infinite dielectric substrate are obtained by us-
ing the discrete complex image method, and the spatial-domain
Green’s functions are obtained as a closed form approximation.
In the first step of the analysis, the Green’s functions expressed

Figure 1. LTSA Geometry

in closed forms using the complex images are used in the MoM
solution of the electric field integral equation, and the current
density on the conducting parts of the antenna is obtained. In
the second step, the effect of the finite dielectric region is mod-
elled with volume polarization currents, and the incident field
vector is modified using the fields of these polarization currents.
The solution of the EFIE for the antenna in air, for currents on
the conducting parts of the antenna with this new voltage vec-
tor yields the solution for the currents. Far field patterns of the
antennas in the E and H planes are compared with HFFS simu-
lation results and with the far field pattern expressions reported
earlier [5].

2. The Method
The geometry of the LTSA is shown in Fig 1. The aim of

this work is to characterize the radiated far-fields of a single
LTSA on a finite-sized dielectric substrate as antenna parame-
ters length (L), height (H), taper angle (α), substrate thickness
(d), and the relative permittivity (εr) vary. The ranges of these
parameters are chosen as:

0.25λ0 ≤ L ≤ 5λ0

0.25λ0 ≤ H ≤ 3λ0

2.50 ≤ α ≤ 90

0.01λ0 ≤ d ≤ 0.1λ0

1 ≤ εr ≤ 10.5



The EFIE derived for the LTSA can be given as

~Eitan(~r) = jω

∫
S

~GA(~r, ~r′) ~Js(~r
′) ds′−

1

j ω

∫
S

∇
(
∇ · ~Js(~r′)

)
Gq(~r, ~r′) ds′ (1)

where ~Js(~r′) is the induced current density, ~Eitan is the tangen-
tial incident electric field, ~GA is the vector potential Green’s
function,Gq is the scalar potential Green’s function, ~r is the ob-
servation point, and ~r′ is the source point. In order to solve the
EFIE, vector and potential Green?s function of the layered me-
dia are obtained using 3-level Discrete Complex Image Method
(DCIM) initially. The spatial-domain Green’s functions are ob-
tained by using the Hankel transformation of the corresponding
spectral-domain Green’s functions as

G(ρ) =
1

4π

∫
SIY

dkρ kρ H
(2)
0 (kρρ) G̃ (kρ) (2)

where SIP stands for the Sommerfeld integration path, H(2)
0 is

the zeroth order Hankel function of second kind, and G̃ (kρ) is
the spectral-domain Green’s function in kρ domain [9]. Since
kernel of the Sommerfeld integral is oscillatory, and its com-
putation is time consuming, this integral is approximated using
closed-forms Green’s function (CFGF). Spatial domain Green’s
function is obtained by using 3-level DCIM. In doing so, the
spectral-domain Green’s functions are sampled along three-
paths on complex kρ plane [10].

Once the closed-form approximations of spatial domain
Green’s functions are obtained, they are used in the EFIE given
in Eqn. (1). Using MoM, the EFIE is discretized by using RWG
basis functions and Galerkin type testing. Doing so results in∫

Sm

~Eitan · ~fm(~r) ds =
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ω
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]]
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(3)
and by rearranging Eqn. (3), the moment method matrix equa-
tion is obtained as:

[Zmn] [α] = Vm (4)

The solution of this matrix equation gives the unknown con-
ductor currents.

In this solution procedure, the feed section of the antenna is
modelled with a pulse source.

The far-field pattern of the antenna can be found using the
calculated antenna currents as:

~F (θ, φ) =

∫
S′

N∑
n=1

an ~fn(~r
′)ej

~k~r′dr′ (5)

~k = k (âx sin θ cosφ+ ây sin θ sinφ+ âz cos θ) (6)

After obtaining the surface current density, the dielectric
substrate geometry is divided into cubical sections. The electric
field in the middle of each segment can be written in terms of the

Figure 2. The effect of polarization currents as the source

surface current density and the associated closed-form Green’s
function, derived for the vector and scalar potentials as follows:

~E(~r) = −j ω
∫
S

~GA(~r, ~r′) ~Js(~r
′) ds′+

∇
[
∇ · 1

j ω

∫
S

~Js(~r
′)Gq(~r, ~r′) ds′

]
(7)

The equivalent polarization currents can be written as:

~Jp = jω(ε− ε0) ~E (8)

The far field pattern of the polarization currents in return is
given as

~F (θ, φ) =

∫
~Jp(~r′)e

~k~r′d~r′ (9)

After completing the modelling for the conductor and di-
electric regions, the effect of the polarization currents on the
voltage vector is calculated.

In order to model this effect, the right hand side of (2) is
modified by the amount as given below:

Vm =

∫
Sc

~E
{
~Jp
}
· ~Jc ds (10)

The EFIE given in Eqn. (3) is solved again without any sub-
strate to obtain the final surface current density on the LTSA.
By using the procedure outlined, the radiation characteristic of
the LTSA has been analysed. The results obtained with the
explained procedure are compared to those obtained earlier by
Janaswamy [5]. The patterns in Janaswamy’s work are obtained
using the far field due to an x-directed two sided infinitesimal
slot located at (x′, z′) on a conducting half-plane given as

êθ, janas(θ, φ) = | sinφ|e jπ/4 F (v) e jk0(x
′ sin θ cosφ+z′ cos θ)

+
sinφ
2
e−j[π/4+k0(x

′ sin θ−z′ cos θ)]

√
πk0x′ sin θ

(11)

where v = k0x
′ sin θ (1 + cosφ), and F (v) is the Fresnel

integral. After finding the aperture electric field, the radiation
characteristics of the LTSA is obtained in [5] as follows:

Eiθ, janas = êθ, janas(θ, φ).E
i
a (12)



Figure 3. E-Plane pattern for an LTSA with εr = 2.2 (L =
2λo, H = 0.5λo, Wf = 0.06λo, d = 0.017λo, α = 7o).

3. RESULTS AND DISCUSSION

The analysis presented in the previous section is cast into a
MoM code and results for various dimensions and permittivity
values are obtained. In this section, the accuracy of E and H
plane patterns of these antennas are investigated by comparing
our results to simulation program HFSS, and to results of earlier
reported approximate method of Janaswamy. In the figures, the
results obtained with HFSS, Janaswamy’s far field expression
and our analysis are compared. Equation (11) goes to infinity
for θ = 90o, and hence the patterns obtained by Janaswamy’s
theory are calculated up to θ = 90o. Label MoM shows our
initial MoM results, while MoM-1st shows the results of our
two-step procedure using the effect of polarization.

With the coordinate system of Fig. 1, E-plane of the an-
tenna coincides with the x−y plane, while H-plane is the x−z
plane. To be able to obtain E-plane θ = 90, φ→ [0, 180], while
for H-plane φ = 0, φ→ [90, 0] and φ = π, θ → [0, 90] planes
are considered.

Fig. 3- Fig. 5 shows the radiation characteristics for a LTSA
with different dimensions and the results using our method are
consistent with HFSS simulation results.

Fig. 6 and Fig. 7 show the comparison for the E and H plane
patterns for an LTSA with L = λo,H = 0.5λo,Wf = 0.06λo,
d = 0.017λo, α = 7o, εr = 2.2. Very good agreement
is observed between our method and HFSS results, while big
differences occur in the results obtained by the method of
Janaswamy. Fig. 8 and Fig. 9 show the comparison for large
antennas for which the dimensions are (L = 4λo, H = λo),
and (L = 5λo, H = 1.5λo), respectively with Wf = 0.06λo,
d = 0.017λo, α = 7o, and εr = 2.2. As can be seen easily
from Fig. 8 and Fig. 9, the accuracy is better than Janaswamy’s
method yields. Fig. 10 and Fig. 11 present the results of a para-
metric study of an LTSA with respect to dielectric constant. It
can be seen from these figures that, as the permittivity increases,
sidelobe level in the E-Plane increases, and the beamwidth in
the H-Plane decreases. Similar studies and results have shown
that the method presented in this work offers reliable and more
accurate results, especially when the antenna size is small, as
most of the time is preferred.

Figure 4. E-Plane pattern for an LTSA with εr = 2.2 (L =
1.5λo, H = 0.375λo, Wf = 0.06λo, d = 0.017λo, α = 7o).

Figure 5. E-Plane pattern for an LTSA with εr = 2.2 (L = λo,
H = 0.25λo, Wf = 0.06λo, d = 0.017λo, α = 7o).

4. Conclusion
In this work, a two-step MoM procedure is presented for

LTSAs on a finite dielectric substrate. The procedure consists
of solving for the antenna currents by closed-form Green’s func-
tion, assuming infinite dielectric substrate initially, then modi-
fying the excitation vector using the polarization currents of the
finite substrate, and solving for the conductor currents of the an-
tenna in the air. The results obtained using the presented method
display good agreement with HFSS results.

In the case of small size antennas, big errors occur in the
results obtained using earlier reported methods, whereas the re-
sults of this work display good accuracy. It is believed that,
modelling the polarization current in the finite dielectric sub-
strate is the reason for this increased accuracy.

For large antennas, the method reported in this work still
gives accurate results, however the computational cost must be
considered as an issue in those cases, since the same problem
is solved twice, first for the dielectric supported antenna, and
the second for the air LTSA case, with modified excitation or
voltage vector using the effect of the polarization in the finite
dielectric.

It is worthwhile to mention that, the method reported in this
paper can be applied directly to other antennas with finite-sized



Figure 6. E-Plane pattern for an LTSA with εr = 2.2 (L = λo,
H = 0.5λo, Wf = 0.012λo, d = 0.017λo, α = 7o).

Figure 7. H-Plane pattern for an LTSA with εr = 2.2 (L = λo,
H = 0.5λo, Wf = 0.012λo, d = 0.017λo, α = 7o).

Figure 8. E-Plane pattern for an LTSA with εr = 2.2 (L =
4λo, H = λo, Wf = 0.012λo, d = 0.017λo, α = 7o).

dielectric substrate, for example to microstrip patch antennas.

Figure 9. H-Plane pattern for an LTSA with εr = 2.2 (L =
5λo, H = 1.5λo, Wf = 0.012λo, d = 0.017λo, α = 7o).

Figure 10. Variation of the E-Plane pattern for an LTSA with
εr = 2.2, εr = 4.4, εr = 6 (L = λo, H = 0.5λo, Wf =
0.012λo, d = 0.017λo,α = 7o)

Figure 11. Variation of the H-Plane pattern for an LTSA with
εr = 2.2, εr = 4.4, εr = 6 (L = λo, H = 0.5λo, Wf =
0.012λo, d = 0.017λo,α = 7o)
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