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Abstract

In the scope of legged robotics, this study is about dynamical
modelling and control of a single legged two degrees of free-
dom planar hopping robot while keeping the focus on the
interaction forces between the robot and the ground based
on a given ground contact model. Based on Raibert’s three
step algorithm, forward speed control is achieved by adjust-
ing the foot position of the robot at touchdown and height
control is achieved by adjusting the compression length of a
linear spring. Using Newton-Euler based Spatial Operator
Algebra (SOA) method, simulation results of the height con-
trol of hopping, forward speed control and the body attitude
control of the robot are given in the paper.

1. Introduction
Until this day, human beings were always interested in de-

veloping machinery and analyzing how they work, to make
things easier or just out of curiosity. In 1970s, Kato and Vuko-
bratovic were the first ones who studied on legged robots which
is one of the most important branches of those studies. Espe-
cially wheeled robots drew the most attention for many years,
because it has been known how hard it is to control and calculate
legged robots. It is harder to stabilize and control legged robots
than the wheeled ones. However, as human beings wanted to
achieve more tasks by using robots, the studies made on legged
robots increased because of their versatility [3].

At present, legged robots can interact better with the en-
vironment that is designated for human beings - legged move-
ment. For this reason legged robots can reach the places where
wheeled robots cannot. And this enables legged robots to exe-
cute tasks which are dangerous for humans.

At the present time, wheeled robots are the fastest mov-
ing robots on ground. However, they may be insufficient when
agility is needed. At this point legged robots come into play.
Legged robots can change their body attitude faster. And using
this ability, they are able to stabilize better on uncertain grounds.

While it is impossible for wheeled robots in conditions
where vertical climbing is needed, specially designed legged
robots are also able to perform these tasks [2].

Wheels can move only on continuous ground and very little
on non-continuous or uneven ground. Therefore, legged robots
submit a wider range of solution space. Thereby they own the
capacity to perform various tasks.

The main difference which separates hopping robots from
walking ones is the interaction between the foot and the ground.
Another difference is while walking, in every step at least one
foot serves as a support, thus there is no flight phase. On the
contrary, hopping robots has a flight phase. While walking

Figure 1. Functional decomposition of the hopping robot

robots are statically stable in every step, since they have a flight
phase, hopping robots are not statically stable.

The purpose of this study is to understand the dynamics
which direct legged robots, especially the hopping robots. Also
to control the basic movements such as hopping height, forward
speed and body attitude of the robot. At the same time, to ana-
lyze its interaction with the ground and add it to the model.

To complete this study, first of all, the kinematic model of
the robot which has a total of eight degrees of freedom that in-
cludes the passive six degrees of freedom of the ground was
formed. After obtaining the dynamical model, the ground type
which will present the interaction of the robot with the ground
in the most realistic way was added to the system. After com-
pleting the modelling process of the robot, the control system
which will enable to control the movements was also added.
Improved version of Raibert’s hopping algorithms was used to
control the model.

Using a Newton-Euler based method instead of a Euler-
Lagrange based method made it easier to add the tip force that
effects the robot, to the system. The modular design of the func-
tions, as shown in figure 1, and using the algorithms formed by
the study group made it possible to adapt the simulator to dif-
ferent legged robots, with minimum effort.

During this study, all of the simulations were carried out
in MATLAB and Simulink. The 3D virtual reality model of
the robot was realized in Virtual Reality Modelling Language
(VRML) format. The goal of the study is, to make a realistic
hopping simulation of the one-legged robot which has been de-



tailed above by using the outputs obtained and to have a tested
model in hand, if the physical implementation is done in future
studies.

In this study which was done to understand the dynamics
that control legged robots, especially the hopping ones, some
simplifying assumptions were adopted to have the results in a
shorter time. These assumptions are:

• The analysis, the designs and the models were realised in
3D world, but the simulation that has been made moves
in 2D.

• Simple controllers were used for control purposes. Con-
trollers aim to control the movements of the robot even
if there is a steady-state error.

• The interaction between the foot and the ground was
modelled as point contact.

• The actuators that real robots have, has been ignored in
this study.

• The friction and the energy loss produced in the system
were omitted within this thesis. Only the energy losses
which were produced by outer forces were considered.

2. Model of Hopping Robot
There are two methods for solid system modelling on the

computer. In the first, equation of motion for a system is done
manually and then it is turned into computer code. In the sec-
ond method which was used in this study, a system model that
defines the given pattern is formed and this model is given as
an argument to the model-based calculation routine [1]. This
method is more desirable because it is easier to construct and to
modify. This method gives the opportunity to use it in different
systems by making small modifications on the model which is
given in this study.

Dynamical modelling technique used in this paper is based
on Spatial Operator Algebra [4]. The vectors belonging to every
link according to this method are given in figure 2.

Figure 3 presents the physical pattern of the one-legged
hopping robot that is on a mobile base that has 8 degrees of
freedom. The robot consists of three parts which are base, hip
and leg. The hip is spherical, the base and the leg are cylin-
drical. The base is attached to the hip by a rotational joint and
the hip is attached to the leg by a prismatic joint. This structure
was inspired from Raibert’s single-legged hopping robot whose
spring effect is provided by a control mechanism [5]. The mo-
ment of inertia of the base is defined considerably higher than
the moment of inertia of the leg. This moves the hip joint to
position the leg in the flight phase and prevents a big variation
at the attitude of the base.

2.1. Kinematic Model

The angular velocities of the manipulator are,

~ω1 = ~ωb +~h1θ̇1

~ω2 = ~ω1 +~h2θ̇2
(1)

And the linear velocities are,

~v1 = ~vb +~ωb ×~l0,1 =~vb −~l0,1 ×~ωb =~vb −L0,1~ωb

~v2 = ~v1 +~ω1 ×~l1,2 =~v1 −~l1,2 ×~ω1 =~v1 −L1,2~ω1
(2)

Here, Lk−1,k =~lk−1,k× is an operator in the form of ’skew sym-
metric’ matrix. If equations (1) and (2) are written in matrix

Figure 2. Vectors that belong to k’th link

Figure 3. The physical pattern of the robot with 8 degrees of
freedom



form, it is as below:

~~V1 = Φ1,0
~~Vb +

~~H1θ̇1

~~V2 = Φ2,1
~~V1 +

~~H2θ̇2

(3)

Here the spatial velocities of the links are:

~~V1 =

[
~ω1
~v1

]
~~V2 =

[
~ω2
~v2

]
(4)

And distribution operators are:

Φ1,0 =

[
3I 30

−L0,1 3I

]
Φ2,1 =

[
3I 30

−L1,2 3I

]
(5)

Finally, the spatial vectors of the axis of rotation of number one
rotational joint and number two prismatic joint are as shown:

~~H1 =

[
~h1
~0

]
~~H2 =

[
~0
~h2

]
(6)

If spatial velocity of every vector is written from the base to the
tip and simplifications are made it can be written as below:

~~V1 = Φ1,0
~~Vb +

~~H1θ̇1

~~V2 = Φ2,0
~~Vb +Φ2,1

~~H1θ̇1 +
~~H2θ̇2.

(7)

The tip velocity of the manipulator is as follows:

~~Vt = Φ tV (8)

Here,

V =

[
~~V1
~~V2

]
Φ t =

[
60, 60 Φ t,2

]
When necessary arrangements are made the kinematic equation
below is derived:

~~Vt = J θ̇ +Φ t,b
~~Vb (9)

Here,

J = Φ tΦH Φ t,b = Φ3,0 = Φ tΦΦb

2.2. Dynamic Model

The derivatives of the angular and linear velocities should
be taken to advance to dynamic analysis:

ω̇1 = ω̇b +~h1θ̈1 +ω1 ×~h1θ̇1

= ω̇b +~h1θ̈1 +ω1 × (ω1 −ωb)

= ω̇b +~h1θ̈1 +ωb ×ω1

ω̇2 = ω̇1 +~h2θ̈2 +ω2 ×~h2θ̇2

= ω̇1 +~h2θ̈2 +ω2 × (ω2 −ω1)

= ω̇1 +~h2θ̈2 +ω1 ×ω2

(10)

and

~v1 =~vb + ω̇b ×~l0,1 +ωb ×
(

ωb ×~l0,1

)
=~vb −~l0,1 × ω̇b +ωb ×

(
ωb ×~l0,1

)
~v2 =~v1 + ω̇1 ×~l1,2 +ω1 ×

(
ω1 ×~l1,2

)
=~v1 −~l1,2 × ω̇1 +ω1 ×

(
ω1 ×~l1,2

)
(11)

If the equations in (10) and (11) are written in matrix form:

~̇~V1 = Φ1,0
~̇~Vb +

~~H1θ̈1 +~~a1

~̇~V2 = Φ2,1
~̇~V1 +

~~H2θ̈2 +~~a2

(12)

Here~~ak are the spatial bias velocities:

~~ak =

[
~ωk−1 ×~ωk

~ωk−1 ×
(
~ωk−1 ×~lk−1,k

) ]
If all links are gathered in a single matrix using equation (12),

V̇ = Φ

(
Hθ̈ +a+Φb

~̇~Vb

)
(13)

is obtained. After this, torque and force distributions of the links
can be written. This is done from the tip to the base because it
cannot be done from the base to the tip.

~T2 = ~T t +~l2,3 ×~f t +~l2,c ×~̇v2m2 +
d
dt

(I2~ω2)

~T1 = ~T2 +~l1,2 ×~f2 +~l1,c ×~̇v1m1 +
d
dt

(I1~ω1)

(14)

In equation (14), the first and the second terms at the right side
are coming from the upper link, the third term is from transla-
tion and the fourth one is from rotation. If link forces are written
like torque distribution, it is as follows:

~~F2 = Φ
T
3,2

~~Ft +M2
~̇~V2 +

~~b2

~~F1 = Φ
T
2,1

~~F2 +M1
~̇~V1 +

~~b1

(15)

Here ~~Fk is the term for link spatial forces, Mk is the term for

link mass matrix and~~bk is the term for link spatial forces and
are defined as follows:

~~Fk =

[
~Tk
~fk

]
Mk =

[
Ik mkLk,c

−mkLk,c 3Imk

]

~~bk =

[
~ω × Ik~ωk

mk~ωk ×
(
~ωk ×~lk,c

) ]
If all link spatial vectors are gathered together, it can be written
as:

F = Φ
T
(

MV̇ + b +Φ
T
t
~~Ft

)
(16)

Here,

F =

[
c~~F1
~~F2

]
M =

[
M1 0
0 M2

]
b =

[
~~b1
~~b2

]

Then, if equation (13) is located in its place at equation (17), it
will be:

F = Φ
T
(

MΦHθ̈ +MΦa +MΦΦb
~̇~Vb + b +Φ

T
t
~~Ft

)
(17)

The torques applied here are the projection of link spatial forces
according to rotation axis. This can be written in mathematical
equation as below:

T = HT F (18)



Figure 4. Schematic of Single Legged Hopping Robot’s Func-
tioning

For this reason, if equation (17) is multiplied with HT , the equa-
tion gives us the torques applied. By this way we can get the
opposite dynamic equation of the manipulator,

T = M θ̈ +C +Mb
~̇~Vb + J T ~~Ft (19)

Here,

M = HT
Φ

T MΦH

C = HT
Φ

T (MΦa + b)

Mb = HT
Φ

T MΦΦb

Above, M is generalized mass matrix, C are bias terms that
includes coriolis and gravity and Mb is the mass matrix about
the interaction between the base and the manipulator.

3. The process of Single Legged Hopping
Robot

The hopping simulation is started by giving an inertial
height and an inertial horizontal velocity to the robot. With the
effect of the gravity the robot accelerates towards the ground.
As soon as the foot touches the ground, the spring at the leg
joint is pressed until the vertical speed of the robot goes down to
zero. After this, the spring starts to discharge and the robot starts
to accelerate on the opposite direction. The robot continues to
move up until the vertical velocity goes down to zero. Then the
cycle is completed. In every cycle, a part of the energy disap-
pears to accelerate the unsprung part of the leg. Thus, to reduce
the energy loss, the mass of the leg’s unsprung part should be
less than the total mass. To maintain the hopping height, when
leg is in contact with the ground, the leg motor starts to press
the leg spring to provide extra energy to the system. To main-
tain the forward movement of the robot, the hip motor applies a
torque in the flight phase so that it can adjust the position of the
leg. The functioning schematic of the hopping robot is shown
in figure 4.

4. Control System
The design of the control system that has been used in this

study, is inspired from Raibert’s single legged hopping robot
controller [5, 6]. Raibert divided controlling into three steps:

• Hopping height control

• Forward speed control

• Body attitude control

4.1. Hopping Height Control

The hopping height of the single legged robot is obtained by
a thrust applied to the leg joint in every cycle. The compression
length of the spring is calculated by comparing the maximum
height of the previous cycle with the height that is planned for
the next cycle. Spring compression length is calculated propor-
tional to this difference [7]. This proportional control rule can
be written as:

∆l = ∆lold + k p (hd −hmax) , (20)

Here, ∆l is the amount of spring compression, k p is the pro-
portional gain, hmax is the maximum height of the robot in the
previous cycle, ∆lold the amount of spring compression in the
previous cycle and hd is the hopping height that is wanted to
achieve.

4.2. Forward Speed Control

The forward speed is obtained by adjusting the position of
the foot in every cycle before it touches the ground. Raibert ob-
served that there is one foot position for every forward speed. To
reach a reference speed, first of all, the control system will esti-
mate the position of an indifferent spot which will not produce
a speed change on the forward speed according to the present
time. Then it places the foot before or after that indifferent spot
to regulate the deceleration or acceleration. One of the impor-
tant parameters to calculate the indifferent spot is the time the
robot spends on the ground. And this time does not change as
long as the mass and the spring rating stays the same. Accord-
ing to this, foot angle can be calculated with the equation below
[7].

θd =−φ + sin−1
(

ẋTs

2r
+

k ẋ (ẋ− ẋd)

r

)
, (21)

Here, k ẋ is the velocity gain, ẋ is the horizontal speed of the
robot, r is the length of the leg, Ts is the time spent on ground
and φ is the body attitude according to reference coordinate sys-
tem. After calculating θd , we need to calculate the torque that
has to be applied to the hip joint by using a PD controller, to
achieve the angle we want. The control rules are as follows:

τ =−k p (θ −θd)− kvθ̇ , (22)

Here, τ is the torque calculated, k p is the proportional gain, kv
is the differential gain and θ is the hip angle.

4.3. Body Attitude Control

The purpose of the third step of the control system is to
control the body attitude by applying a torque on the hip joint
while the robot is on the ground. While doing this timing should
be watched carefully. Because the robot will start to slip if the
force used on the robot and the friction that is formed according
to this is smaller than the torque used on the hip joint. When
these are considered the control rule [7]:

τ =+k p (φ −φd)+ kvφ̇ , (23)

here, k p is the proportional gain, kv is the differential gain, φ is
the robot base angle and φd the robot base angle which we want
to achieve.



Figure 5. The force diagram of a block on the ground

5. Ground Contact Model
In general,when contact has occurred, the interaction be-

tween the robot and the ground can be studied in two topics:
tangential and the normal forces which act on the robot. Figure
5 displays the force diagram originated from a block contacting
with the ground.

5.1. Collision Model

Generally, contact models are divided in two topics: solid
contact and compliant contact. Solid contacts is also called col-
lision. The collision between two solid substances happens in
a very short time, very high forces are included, sudden energy
losses occur and high accelerations take place. In this study, the
collision model is based on the advanced state of spring-damper
collision model which was used in MSC Adams software. Ac-
cording to that, the collision model applied is as below [8]:

F = k (x1 − x)e − cmaxẋ ·ST EP(x,x1 −d,1,x1,0) , (24)

Here, x is the distance between two bodies, x1 is the distance
where the friction is going to be started to calculate, k is the
spring coefficient, e is the positive real variable which indi-
cates the force deformation characteristic, cmax is the maximum
damper coefficient, d is the penetration depth, and ST EP is the
cubic step function.

One of the differences of the model from the classic spring -
damper model is using the spring force as an exponential func-
tion. If x value is smaller than x1 value, the relative velocity
of two bodies will be different from zero and the linear damper
force becomes discontinuous. For this reason, unlike the clas-
sic linear spring-damper model, in this method, cubic step func-
tion was used to increase the damper force along the penetration
depth. Cubic step function is given below:

ST EP =


h0, x ≤ x0

h0 +a∆2 (3−2∆) , x0 < x < x1

h1, x ≥ x1

a = h1 −h0

∆ = (x− x0)/(x1 − x0)

Here, x is the independent variable, x0 is the starting point
of the step function, x1 is the finishing point of the step function,
h0 is the starting value of the step and h1 is the last value of the
step.

Figure 6. The graphic to track the robot’s hopping height ac-
cording to the given reference

5.2. Friction Model

Friction is the tangential surface reaction formed between
two bodies in contact [9]. In this study, since it is easy to
execute, classic Coulomb model was used. The main idea of
Coulomb friction is that the friction responds to movement and
its intensity is independent from the speed and the contact area.
For this reason friction can be written as:

Fs = µFn (25)

Here Fs is the friction force, Fn is the normal force that effects
the body and µ is the friction coefficient.

6. Simulation Results and Evaluation
The dynamic model of the single-legged hopping robot with

8 degrees of freedom is realised, the control system to control
its hopping height and forward speed is designed and the simu-
lation of the system is achieved. For dynamic evaluations Spa-
tial Operator Algebra, that was suggested by Abhinandan Jain
and Guillermo Rodriguez is used. During the controls of the
single-legged hopping robot, the hopping height control, the
forward speed control and the body attitude control was com-
pleted successfully by using Raibert’s three-step control sys-
tem. For the ground model, advanced spring-damper collision
model and Coulomb friction force was applied. As the result of
the tests, the coefficients for the control system and the ground
model was determined and was added to the system to get a
simulation as realistic as possible.

For position control of the leg joint, while robot is in con-
tact with the ground a desired value was given to the system
as input. At other phases, since the oscillation of the spring is
not desired, zero is given as input. Different control entries for
different phases of the hip joint has been applied. Hip joint is
responsible for the angle of the foot when contacting the ground
and arranging the basic attitude. The graphic outputs after ap-
plying the control is shown on figures 6 and 7.

In the hopping height graphics, steady state errors can be
observed. That is the hopping height can be a little less or more
than the desired height.

In the graphics obtained from the forward speed control,
two things can be seen clearly. The first one is, right after the



Figure 7. The graphic to track the robot’s forward speed ac-
cording to the given reference

start of the flight phase, there may be sudden increases at the
forward speed. The main reason for that is the sudden change in
the signal of the control system of the hip that produces a kick
of the foot in the flight phase. And the second is, permanent
attitude errors can also be seen at the forward speed.

7. Result
Because of their versatility legged robots is an important

branch of robotic. Most of the studies that are made in this area
are about the designing of the robots. Simulation is one of the
important tools to get a successful design. It is important to use
models that reflect the fact correctly to obtain designs which
will be implemented to life successfully.

Gathering and bunching a large system with the help of
smaller subsystems makes it quite easier to analyze, test and un-
derstand the unexpected behaviours of the system. As a result
of this, it becomes easier to make modifications on the system
and to observe their results.

One of the best ways to see the errors in a complicated
system is, to visualise the movements of the system and view
their behaviour in an virtual reality platform. The visualisations
made on VRML, which is an virtual reality platform, was very
helpful in understanding and solving the problems during this
study.

Listed below are, the forward studies that can be added to
develop and advance the studies which has been done in this
area:

• To develop the system for two or multi-legged system.

• To advance the hopping simulation from 2D to 3D.

• To develop the system by using more realistic ground
models.

• To add advanced control systems to the model.
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