
Multiplier-less 1-Level Discrete Wavelet Transform Implementations on
ZC706 development kit

Husam ALZAQ, Burak Berk Üstündağ

Department of Computer Engineering, Faculty of Computer Engineering,
Istanbul Technical University, Istanbul, Turkey.

alzaq@itu.edu.tr, ustundag@itu.edu.tr

Abstract
In this paper, we investigate the design and implementa-

tion aspects of 1-level DWT by employing a finite impulse
response (FIR) filter on FPGA platform. We estimate the
performance requirements and hardware resources for two
key multiplication-free architectures, namely, distributed
arithmetic algorithm (DAA) and residue number system
(RNS), allowing for selection of the proper algorithm and
implementation of DAA and RNS-based DWT. The design
has been implemented and synthesized in Xilinx ZYNQ-
7000 FPGA, taking advantage of embedded block RAMs
(BRAMs). The results show that the DAA-based approach
is appropriate and feasible for a small number of filter taps,
while the RNS-based approach would be more appropriate
for more than 10 filter taps.

1. Introduction
Discrete wavelet implementation (DWT) is implemented

by finite impulse response (FIR) filter. The minor problem of
multiplier-accumulator (MAC) implementation is the computa-
tionally intensive multiplication. These multipliers determine
the hardware complexity of the design and area usage. More-
over, if the number of multiplication units is insufficient to per-
form the task, the applied algorithm must be replaced with a
new one that should meet the same requirements. In this case,
the multiplier units can be replaced by new algorithm that inter-
nally performs the multiplication by using different units such
as memory and adders.

This work presents 1-D DWT implementations on Xilinx
ZYNQ ZC706 by means of memory-based approaches. We
compare various implementations in terms of system perfor-
mance and resource consumption. Because the fundamental
niche of this work is on extracting the key features of a signal
via DWT, the inverse DWT (IDWT) and high-pass filter coeffi-
cients are not considered.

The remainder of this paper is organized as follows. In sec-
tion 2, the related works are briefly reviewed. In Section 3, the
theoretical background on DAA and RNS is given. Section 4 il-
lustrates the implementation of discrete wavelet transform. Sec-
tion 5 presents the performance results. Finally, conclusions are
drawn in Section 6.

2. Related work
Implementations of 1-D DWT for signal de-noising, feature

extraction and pattern recognition can be found in [1, 2]. The
conventional convolution based DWT requires massive com-
putations and consumes much area and power, which could

be overcome by using the lifting based scheme for DWT,
introduced by Sweldens [3]. The key advantage of using
convolution-based DWT over lifting approach is that they do
not require temporary registers to store the intermediate results
and with appropriate design strategy they could have better area
and power efficiency [4].

Rather than the simplest implementation of FIR filter via
multipliers and an adder tree, a multiplier-free architecture is
suggested because they result in low complexity systems [4].
There are essentially two approaches for facilitating parallel
processing, the distributed arithmetic algorithm (DAA) and
residue number system (RNS). DAA efficiently performs the
inner product function in a bit-serial manner via a look-up table
(LUT) scheme that is followed by shift accumulation operations
of the LUT output [5, 6]. The LUT, a memory element, stores
precomputed partial results [7]. Several techniques have been
proposed to improve the design, such as the partial sum tech-
nique [7]. Alternatively, RNS is a highly parallel non-weighted
arithmetic system that is based on the residue of division oper-
ation of integers using the LUT scheme [4, 8]. Eventually, the
RNS-based results are converted back to the equivalent binary
number format using a Chinese reminder theorem (CRT) [9].
The key advantage of RNS is gained by reducing an arithmetic
operation to a set of concurrent, but simple, operations.

In this paper, a three major 1-D DWT approaches are im-
plemented on FPGA-based platforms and compared in terms
of performance and energy requirements. The implementations
are compared for different number of multipliers and memory
consumptions. To the best of our knowledge, no detailed com-
parisons of hardware implementations of the three major 1-D
DWT design exist in the literature. This comparison will give a
significant insight on which implementation is the most suitable
for given values of the relevant algorithmic parameters.

3. Background
This section provides background information and prelimi-

naries on the discrete wavelet transform, distributed arithmetic
algorithm and the residue number system that are directly rel-
evant and useful for designing and implementing the proposed
architecture. A brief description of these methods is as follows.

3.1. Discrete Wavelet Transform

The wavelet decomposition mainly depends on the or-
thonormal filter banks. Fig. 1 shows a two-channel wavelet
structure for decomposition, where x[n] is the input signal, g[n]
is the high-pass filter, h[n] is the low-pass filter, and ↓ 2 is
the down-sampling by a factor of two. In this way, DWT filter
creates a series of coefficients that represents and compacts the



Figure 1. Multi-resolution wavelet decomposition. The block
diagram of two-channel two-level DWT decomposition (J = 2)
that decomposes a discrete signal into two parts. Note that ↓ 2 is
keeping one sample out of two, ai and di are the approximation
and details at level i, respectively.

original signal information.
Mathematically, a signal y[n] consists of high and low fre-

quency components, as shown in equation (1).

y[n] = yhigh[n− 1] + ylow[n− 1] (1)
The decimated low-pass filtered output is recursively

passed through identical filter banks to add the dimension of
varying resolution at every stage. Equations (2) and (3) math-
ematically express the filtering process of a signal through a
digital high-pass filter g[k], and low-pass filter h[k]. This oper-
ation corresponds to a convolution with an impulse response of
k−tap filters.

yhigh[n] =
∑
k

g[k].x[2n− k] (2)

ylow[n] =
∑
k

h[k].x[2n− k] (3)

where n becomes 2n, representing the down-sampling process.
The output ylow[n] provides an approximation signal, while
yhigh[n] provides a detailed signal.

3.2. Distributed Arithmetic Algorithm

Equation (3) shows that output y is the sum of multipli-
cation of the filter coefficients and the input. The distributed
arithmetic algorithm (DAA) eliminates the need for hardware
multipliers by performing the arithmetic operations in a bit se-
rial computation [5, 7]. Because the down sampling process
follows each filter (as shown in Fig. 1), equation (3) can be
rewritten without the decimation factor as:

y[n] =

N−1∑
k=0

h[k].x[n− k] (4)

where N is the filter tap. For the sake of simplicity of represent-
ing equation (4), x[n− k] is replaced by x[k]. Hence, equation
(4) can be expressed as:

ylow[n] =

N−1∑
k=0

x[k].h[k] (5)

For DB2 wavelet, where the number of tap is 4, equation (5)
can be expanded as

ylow[n] = h[0].x[n]+h[1].x[n−1]+h[2].x[n−2]+h[3].x[n−3]
(6)

Further simplification can be performed on the x[k], equa-
tion (4). Considering the representation of x[k] as a fixed point
arithmetic with length L, x[k] becomes

x[k] = −x[k]0 +

L−1∑
l=1

x[k]l.2
−l (7)

where x[k]l is the lth bit of x[k] and x[k]0 is the sign bit. Sub-
stituting equation (7) into (4), the output of the filter becomes

y[n] =

N−1∑
k=0

h[k].(−x[k]0 +

L−1∑
l=1

x[k]l.2
−l) (8)

By interchanging the order of summations, equation (8) can be
written as

y[n] =

[ L−1∑
l=1

2−l.

N−1∑
k=0

h[k].x[k]l

]
+

N−1∑
k=0

h[k](−x[k]0) (9)

Considering x[k]l which takes a value of either 0 or 1,∑N−1
k=0 h[k].x[k]l may have only 2N possible values. That is,

rather than computing the summation at each iteration online, it
can be pre-computed and stored in a ROM, indexed by x[k]l.

3.3. Residue Number System

The RNS [10, 11] is a non-weighted number system that
performs parallel carry-free addition and multiplication arith-
metic. In DSP applications, which require intensive computa-
tions, the carry-free propagation allows for concurrent compu-
tation in each residue channel.

The RNS moduli set, P = m1,m2, . . . ,mq , consists of
q channels. Each mi represents a positive relatively prime in-
teger, that is GCD(mi,mj) = 1, for i 6= j.1 Any number,
X ∈ ZM = 0, 1, . . .M − 1, is uniquely represented in RNS
by its residues |X|mi , which is the remainder of division X by
mi and M is defined in equation (10),

M = Πq
i=1mi = m1 ∗m2 ∗ · · · ∗mq (10)

M determines the range of unsigned numbers in [0,M−1],
and should be greater than the largest performed results.

In this work, the moduli set Pn = {2n − 1, 2n, 2n+1 − 1}
is used for three reasons. First, the multiplicative adder (MA)
is simple and identical for m1 = 2n − 1 and m3 = 2n+1 − 1.
Second, for small n = 7, the dynamic range of P7 is large,
M = 4145280, which could efficiently express real numbers
in the range [−2.5, 2.5] using 16-bit fixed-point representation,
provided scaling and rounding are done properly. We assume
that this interval is sufficient to map the input values, which is
not exceeded±2. Third, the reverse converter unit is simple and
regular [12] because it does not employ any ROM.

4. DWT Implementation Methodology
4.1. DWT implementation using DAA

DAA hides the explicit multiplications with an ROM
lookup table, which stores all possible values of the inner prod-
uct of a fixed w−bit with any possible combination of the DWT
filter coefficients. The input data, x[n], are signed fixed-point
of 22−bit width, with 16 binary-point bits (Q5,16).

1The greatest common divisor (GCD) of two non-zero integers is
the largest positive integer that divides them without a remainder.



Figure 2. The block diagram of DAA-based architecture of the
DB2. For simplicity, we showed one ROM and one shift regis-
ter. In the actual design, there are 22 ROMs and shift registers.
>> is a 16 − l shift operation, where 16 is the number of the
binary point.

Figure 3. The block diagram of DB2 RNS-based architecture.
BRC is an abbreviation for binary-to-residue converter, RBC
for residue-to-binary converter and MA for modulo adder.

Fig. 2 shows the block diagram of DAA of one bit at posi-
tion l. This block contains one ROM of (4 × 22) and one shift
register. Because the word’s length w of the input is 22−bits,
the actual design contains 22 blocks. In addition, 21 adders are
required to sum up the partial results.

4.2. DWT implementation using RNS

The DWT implementation that employs RNS has mainly
three components— i.e., the forward converter, modulo adders,
and reverse converter. The forward converter, which is also
known as the binary-to-residue (BRC), is used to convert a bi-
nary input number to residue numbers. The reverse converter
or the residue-to-binary converter (RBC) is used to obtain the
result in a binary format from the residue numbers. These
components are shown in Fig. 3. We will refer to the RNS-
system, which does not include RBC, as a forward-converter
and modular-adders (FCMA).

4.2.1. The forward converter

The forward converter converts the multiplication result of
an input by a wavelet coefficient to q residue numbers via LUT,
shift and modulo adders, where q is the number of channels.

4.2.2. RNS-system number conversion

The received sample, X[i], is scaled up by shifting y po-
sitions to the left (multiplying by 2y). This ensures that X[i]
is a y−bit fixed point integer. In a similar manner, the wavelet
coefficients are scaled by shifting it z positions to the left. In
our design, we set the filter scaling factor z to 11. As a result,
the low-pass filter of DB2 is multiplied by 211 and rewritten as,

ylow[n] = −266x[n]+459x[n−1]+1713x[n−2]+989x[n−3]
(11)

Figure 4. The block diagram of the binary-to-residue converter
for the 3-channel RNS-based DWT, P7 = {127, 128, 255}.
Four identical memories are used at each tap. The upper cor-
ner shows the memory content at location j ∈ [0, 15].

4.2.3. Modulo mi multiplier

The multiplication of the received sample, X[i], by the filter
coefficients, is performed via indexing the ROM. As the word-
length, w of the received sample X[i] is increased, the memory
size becomes 2w. To improve the design, we suggest to preserve
one ROM that contains all module results. In this way, each
word at location j contains the q modules of hk ∗ j ∗ 211. Fig.
4 shows the internal BRC block design of the 3-channel moduli
set P7 = {127, 128, 255} with its memory-map at right top
corner. It shows that, for a location j, the least significant 8-
bit contains |hk ∗ x|m3 , the next 7-bit contains |hk ∗ x|m2 and
the most significant 7−bit contains |hk ∗ x|m1 , which can be
generalized as shown in equation (12). The advantage of this
method is that no extra hardware is required to separate each
module value.

ROM(j) = |hk ∗ j ∗ 211|m1∗2
2n+1+

|hk ∗ j ∗ 211|m2∗2
n+1+

|hk ∗ j ∗ 211|m3 , j = [0, 2w]

(12)

As DAA-based approach, if the input word-length is 16
bits, the ROM should contain 216 locations. One way to reduce
the size of the memory is to divide it into four ROMs, each con-
sisting of 4 × 22−bits. Fig. 4 shows the block diagram of the
binary-to-residue converter with four ROMs; each is indexed
by four bits of x. However, the output of each ROM should be
combined, so that the final result is correct. According to the
previous improvements, the RNS-based works as follows. The
input X16−bit = (x1, x2, x3, x4) is divided into four segments.
Each of the 4−bit segment is fed into one ROM, so that three
outputs, corresponding to |hk ∗ xl ∗ 211|mi , are produced.

To obtain the final multiplication’s result, each mi output
should be shifted by l positions, where l is the index of the low-
est input bit (4, 8 or 12). The modular multiplication and shift
for 2n − 1 and 2n+1 − 1 can be achieved by a left circular shift
(left rotate) for l positions, whereas the modular multiplication
and shift for 2n can be achieved by a left shift for l positions
[8].

4.2.4. Modulo adder (MA)

The modulo adders are required for adding the results from
a modular multiplier as well as for a reverse converter. In this
work, we have two types of MA — i.e., one is based on 2n



and the other is based on 2n − 1. Modulo 2n adder is just the
lowest n bits of adding two integer numbers, where the carry is
ignored. Modulo 2n − 1 adder differs from modulo 2n adder
in that the carry should be considered to limit the result to not
greater than 2n − 1, as in equation (13).

|x + y|2n−1=

{
x + y if x + y 6 2n − 1,

x + y + 1 otherwise
(13)

4.2.5. The reverse converter

Mapping from the RNS system to integers, Z, is performed
by the Chinese reminder theorem (CRT) [9, 12]. The direct
implementation of CRT is inefficient because it requires a di-
vider unit and several multipliers to determine the final output.
However, the moduli set Pn = {2n − 1, 2n, 2n+1 − 1} can be
efficiently implemented by four modulo adders and two multi-
plexers [12].

5. Performance Analysis and Validation
In this section, we show the performance of the two ap-

proaches, in addition to the synthesis results. Hardware analy-
sis was performed by using a Xilinx System Generator for DSP,
which is a high-level software tool that enables the use of MAT-
LAB/Simulink environment to create and verify hardware de-
signs for Xilinx FPGAs. The hardware-software co-simulation
design has been synthesized and implemented on Xilinx Zynq-
7000 All Programmable SoC ZC706 Evaluation Kit [13].

The implementation of 1-level RNS and DAA is compared
with the multiplier-accumulate based DWT structure (MAC)
and by the one that use an IP FIR Compiler 6.3 (FIR6.3) block,
which provides a common interface to generate highly parame-
terizable, area-efficient, high-performance FIR filters [14].

For RNS implementation, the moduli sets of P7 =
{127, 128, 255} and P10 = {1023, 1024, 2047} were used. In
all implementations, the word-length was set to 16 bits.

5.1. Resource utilization and system performance

Table 1 summarizes the resource consumption of each fil-
ter implementation. It shows that the MAC and IP FIR-based
implementations have 4 multiplier units (DSP48E1s) and maxi-
mum frequencies of 296 and 472 MHz, respectively. In con-
trast, DAA- and RNS-based implementations occupy 22 and
16 memory blocks (BRAMs), where BRAM is an optimized
lookup tables (LUTs) used to store the pre-calculated wavelet
coefficients.

Table 1 also shows that the number of slice registers, slice
LUTs and occupied slices of P10 RNS-based is greater than one
of P7 because the former is 31 bits (bus width), while the later is
22 bits. As a result, the number of flip-flops is increased and the
number of resources is approximately increased by one third.
However, the maximum frequency in both designs is greater
than 200 MHz.

5.2. Functionality Verification

The 1-level DB2 discrete wavelet transform was simulated
by a ModelSim simulator. Fig. 5 shows that the MAC and DAA
have lower latency than other approaches.

Eventually, we have verified the simulated result on ZC706
kit. The simulation and hardware co-simulation results of the
1-level DB2 implementations are highly correlated, as shown in
Fig. 6. It also shows that there is a stroke at the beginning of

Figure 5. The output and latency of 1-level DWT using a Mod-
elSim simulator when a sin wave is applied. Each clock cycle
is 10 ns.

Figure 6. The output of 1-level DWT when a pattern-based
signal [1] is applied. It is used to extract the main features of
the received signal.

each RNS-based DWT implementations considering the initial-
ization of the internal registers is zero, and this value is propa-
gated to influence the first two values.

5.3. Discussion

Previous results reveal that the DWT performance is ef-
fected by several factors, including number of filter taps and
word-width. Generally, DAA-based implementation outper-
forms the RNS-based in terms of number of memory for small
number of filter taps. As the number of taps increases, the num-
ber of memory keeps constant and its size is proportional to
number of taps (2N ). On the other hand, RNS-based approach
is appropriate for large number of filter taps because the size
does not change as the number of taps increases.

Moreover, the two approaches differ in their memory con-
tent. While the memory content of DAA-based implementation
is consistent and identical, the memory content of RNS-based
varies from tap to tap. This is obvious because each memory
stores the multiplication values of each filter coefficient by the
moduli set, as shown in equation (12).

The word-length determines the number of occupied mem-
ory in both implementations. As the word-length increases,
the number of memory within the DAA- and RNS-based ap-
proaches increases linearly by w and w ∗ dlog2(w)e, respec-
tively. In addition, we could not omit the impact of output word-
length on the accuracy and the internal structure of DAA-based
approach.

6. Conclusion
In this work, we have studied the effect of multiplier-less ar-

chitectures DWT, which has a substantial influence on the over-
all performance of the design and resource availability. More-
over, we presented pipelining DAA- and RNS-based implemen-



Table 1. The resource use and system performance of the implementation of DWT with Xilinx ZYNQ ZC706 kit for 1-level DB2
implementation.

FIR DAA MAC RNS(n = 7) RNS(n = 10)

Slice LUTs (218600) 50 492 72 905 1335

Slice Registers (437200) 176 623 250 589 795

Slice (54650) 41 159 52 319 419

LUT Flip Flop Pairs (218600) 126 580 194 1037 1452

Block RAM Tile (1090) 0 22 0 16 16

DSPs DSP48E1 (900) 4 0 4 0 0

Max. Operating Freq. (MHz) 680,76 375,94 290,61 216,54 206,78

Min. Period (ns) 8,531 6,559 7,340 5,382 5,164

Data Path Delay (ns) 1,208 3,402 2,632 4,296 4,573

Total On-Chip Power (W) 0,245 0,288 0.246 0,302 0,315

On-Chip Components (mW) 7 51 9 64 76

Block RAM (mW) 0 36 0 32 32

tations of discrete wavelet transform and compared them with
the pipelining MAC-based approach. These approaches inten-
sively employs memory (LUT) to speed up the entire processing
time. The trade-off between system performances and resource
consumption was also addressed. Experiment results show that
the DAA-based approach is appropriate for a small number of
filter taps, while the RNS-based approach would be more appro-
priate for a number of filter taps that is greater than 10. Future
work will focus on optimizing the FPGA resource utilization
for RNS-based approach.

7. References
[1] H. Alzaq and B. Ustundag, “Wavelet Preprocessed Neu-

ral Network Based Receiver for Low SNR Communica-
tion System,” in European Wireless 2015; 21th European
Wireless Conference; Proceedings of, May 2015, pp. 1–6.

[2] F. Duan, L. Dai, W. Chang, Z. Chen, C. Zhu, and W. Li,
“sEMG-Based Identification of Hand Motion Commands
Using Wavelet Neural Network Combined With Discrete
Wavelet Transform,” IEEE Transactions on Industrial
Electronics, vol. 63, no. 3, pp. 1923–1934, March 2016.

[3] I. Daubechies and W. Sweldens, “Factoring Wavelet
Transforms into Lifting Steps,” Journal of Fourier
Analysis and Applications, vol. 4, no. 3, pp. 247–
269, 1998. [Online]. Available: http://dx.doi.org/10.1007/
BF02476026

[4] P. K. Meher, B. K. Mohanty, and M. M. S. Swamy,
“Low-Area and Low-Power Reconfigurable Architecture
for Convolution-Based 1-D DWT Using 9/7 and 5/3 Fil-
ters,” in 2015 28th International Conference on VLSI De-
sign, Jan 2015, pp. 327–332.

[5] A. Peled and B. Liu, “A New Hardware Realization of
Digital Filters,” Acoustics, Speech and Signal Processing,
IEEE Transactions on, vol. 22, no. 6, pp. 456–462, Dec
1974.

[6] F. Taylor, “Residue Arithmetic A Tutorial with Exam-
ples,” Computer, vol. 17, no. 5, pp. 50–62, May 1984.

[7] S. White, “Applications of Distributed Arithmetic to Dig-
ital Signal Processing: A Tutorial Review,” ASSP Maga-
zine, IEEE, vol. 6, no. 3, pp. 4–19, July 1989.

[8] K. Reddy, S. Bajaj, and S. Kumar, “Shift Add Approach
Based Implementation of RNS-FIR Filter Using Modified
Product Encoder,” in TENCON 2014 - 2014 IEEE Region
10 Conference, Oct 2014, pp. 1–6.

[9] K. H. Rosen, Elementary Number Theory and its Applica-
tions, 5th ed. Reading, MA: Addison-Wesley, 2004.

[10] W. Jenkins and B. Leon, “The use of Residue Number
Systems in the Design of Finite Impulse Response Dig-
ital Filters,” Circuits and Systems, IEEE Transactions on,
vol. 24, no. 4, pp. 191–201, Apr 1977.

[11] C. H. Chang, A. S. Molahosseini, A. A. E. Zarandi,
and T. F. Tay, “Residue Number Systems: A New
Paradigm to Datapath Optimization for Low-Power and
High-Performance Digital Signal Processing Applica-
tions,” IEEE Circuits and Systems Magazine, vol. 15,
no. 4, pp. 26–44, Fourthquarter 2015.

[12] S.-H. Lin, M. hwa Sheu, C.-H. Wang, and Y.-C. Kuo,
“Area-Time-Power Efficient VLSI Design for Residue-to-
binary Converter Based on Moduli Set (2n, 2n+1−1, 2n+
1),” in Circuits and Systems, 2008. APCCAS 2008. IEEE
Asia Pacific Conference on, Nov 2008, pp. 168–171.

[13] Xilinx Inc., Zynq-7000 All Programmable SoC ZC706
Evaluation Kit,. [Online]. Available: https://www.xilinx.
com/products/boards-and-kits/ek-z7-zc706-g.html

[14] Xilinx, “LogiCORE IP FIR Compiler v6.3,” Product
Specification DS795, Oct 2011.


