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Abstract
In this work, a novel model is proposed for Deterministic
Timed Arc Petri Nets. In the proposed Timed Arc Petri
Net, transition firing processes are associated with time,
where time is interpreted as firing delays, hence determinis-
tic time-delays are assigned with arcs. In Timed Petri Nets
with firing delay, corresponding tokens can become tem-
porarily invisible and re-visible during the firing process of
a transition. In order to overcome this temporary invisi-
bility, a new triangular graphical element, namely time el-
ement, is introduced. This new time element allows user to
observe temporarily invisible tokens and it depicts the whole
firing process graphically.

1. Introduction
Discrete-Event Systems (DESs) are event-driven systems

described by the occurrence of discrete events [1]. Petri Nets
(PNs) have been used to model such systems whose state evo-
lution depends on this occurrence. PNs are the modeling
paradigm such that they was first introduced without the no-
tation of time [1, 2, 3, 4]. Untimed PNs are insufficient to de-
fine the complete model of the system since the delay of system
activities are not taken into consideration [5]. Usage of time
is necessary to model such time delayed systems [4]. A time
extension of untimed PNs was introduced as Timed Petri Nets
(TdPNs) [6, 7, 8, 9, 10] where the time can be associated with
transitions, places or arcs of a PN [9]. Time can be associ-
ated with an event in three ways as deterministic time delays,
stochastic time delays and time intervals [6].Besides, time de-
lays in TdPNs are essentially interpreted as in three ways as
firing, holding and enabling delays [6]. In this work, Timed Arc
Petri Nets with deterministic time delays are considered, where
time is interpreted as firing.

Some studies have been proposed for Timed Arc Petri Nets.
They could be classified into two categories. Firstly, arcs are
associated with time-intervals and tokens have their own age.
Each arc with a time interval restricts the age of tokens travel-
ing through the arc [11, 12, 13, 14, 15, 16, 17]. In these studies
time delays are interpreted as enabling. Secondly, only arcs
are associated with deterministic time-delays and tokens have
no age [6, 9, 18]. In these studies, time delays are interpreted
as enabling [6, 9, 18] and holding [6]. To the best of the au-
thors’ knowledge, for Timed Arc Petri Nets, time delays are not
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associated with firing process (not interpreted as firing) at any
work in the literature such that authors have proposed the hour-
glass representation [19]. However, in the case of holding and
enabling delays especially concerning to time intervals, tokens
resides in places such that one may need the time left to the
availability of each token [20]. One may also need to observe
the firing process. In TdPNs with firing delay, corresponding to-
kens can become temporarily invisible and re-visible during the
firing process of a transition. The approach, namely Stretched
Petri Net (SPN), proposed for TdPNs with firing delays [10, 20].
SPN has been proposed by introducing new transitions with unit
delays, new places and new arcs with unity weights. SPN allows
user to observe the firing process by converting the TdPN to an
untimed PN; however, new transitions, places and arcs have to
be added into the timed net. The number of these new elements
are increased as related time delay of an event rises.

In this work, a novel Deterministic Timed Arc Petri Net
model is proposed, where deterministic time delays are associ-
ated with arcs and time is interpreted as firing delays. In the
graphical representation, in order to overcome the temporary
invisibility in TdPNs and to observe the firing process via only
one element, a new triangular graphical element, namely time
element, is introduced. This new time element allows user to
observe temporarily invisible tokens and it depicts the whole
firing process graphically. In the mathematical representation,
the resulting states are represented by marking vectors which
represent the number of tokens in all places, by time element
vectors which represent the number of flowing tokens in time
elements, and by remaining time vectors which represent the
time-status of flowing tokens in time elements.

2. Timed Petri Nets
A TdPN with firing delay is defined as a tuple

GTdPN (P, T,N,O,M0,D) [10]. Here, P := {pi| i =
1, 2, ...,m ∈ N\{0,∞}} is the finite set of places, where N
is the set of natural numbers, and T := {ti| i = 1, 2, ..., n ∈
N\{0,∞}} is the finite set of transitions ( P ∩ T = ∅ ).
N : P × T → N is the input matrix which specifies weights
of the arcs directed from places to transitions, namely ingoing
arcs, and O : P × T → N is the output matrix which specifies
weights of the arcs directed from transitions to places, namely
outgoing arcs. M0 : P → N is the initial marking vector at the
initial time k0. D := {dti ∈ N\{0}| i = 1, 2, ..., |T |} is the
set of time delays, where dt is the time delay of the transition
t ∈ T (|∗| indicates the number of elements in the set *.) In this
work, it is assumed that the time, i.e. k ∈ N, can be discretized
into time slots (ts) by using an appropriate sampling period. An



example TdPN model is shown in Fig. 1.
The state of the TdPN at time k is given by S(k) :=

{M(k), Q(k)}, where M(k) : P → N is the marking vector
at time k, and Q(k) := {(t, k − κf (t))|k − dt < κf (t) < k},
where κf (t) presents the firing time of the transition t ∈ T .
For the sake of simplicity, after this M(k) represents the mark-
ing vector at time k and M(p) represents the number of tokens
assigned to place p ∈ P by M(k).

Figure 1. An example of TdPN.

A transition t ∈ T is enabled at time k iff it is en-
abled at M(k), that is iff M(p) ≥ N(p, t) for all p ∈ P .
E(GTdPN ,M(k)) ⊆ T represents the set of enabled transi-
tions of GTdPN at M(k). A transition t ∈ T can fire at time k
iff t ∈ E(GTdPN ,M(k)).

An example of TdPN’s firing process concerning to the
transition t1 ∈ T model is shown in Fig. 2. In TdPN with fir-
ing delay, the firing process concerning to the transition t ∈ T
starts with the firing of the transition t ∈ T at time k = κf (t).
An enabled transition removes the token(s) from the input place
p ∈ •t immediately and does not create any token(s) in the
output place during the firing duration. Here, •t := {p ∈
P |N(p, t) ̸= 0} describes a finite set of input places concern-
ing to t ∈ T . The transition holds the token(s) during the firing
delay. These causes a temporary invisibility of token(s) in the
marking vector during the firing delay (See Fig. 2.b). The to-
ken(s) is created in the output place p ∈ t• after the firing delay
is elapsed (See Fig. 2.c). Here, t• := {p ∈ P |O(p, t) ̸= 0}
describes a finite set of output places concerning to t ∈ T .

Figure 2. An example of TdPN’s firing process. (a) k <
κf (t1), (b) κf (t1) ≤ k < κf (t1) + dt1 , c) k ≥ κf (t1) + dt1

3. Timed Arc Petri Nets
In this section, the proposed Timed Arc Petri Net (TdAPN)

is introduced to show temporarily invisible tokens transmitted
through arcs. In TdAPN, arcs are associated with deterministic
time delays in terms of the appropriate ts.

3.1. The Proposed Model

A TdAPN is defined by a tuple
GTdAPN (P, T,∇, N,O, S0, D,∇P ,∇T ) . Here, ∇ := {hi|
i = 1, 2, ..., r ∈ N\{0,∞}} is the finite set of time elements
( ∇ ∩ P = ∅ and ∇ ∩ T = ∅). The complete initial state at
the initial time k0 is S0 := {M0,∇M0 ,∇R0}, where M0 is
the initial marking vector as defined in TdPN, ∇M0 : ∇ → N
is the initial time element vector at time k0 and ∇R0 : ∇ → N
is the initial remaining time vector assigned to time elements at
time k0. It is assumed that ∇M0 and ∇R0 are equal to 0|∇|,1

in this study, thus the net is relaxed (0|.|,1 denotes a |.| x 1
sized column zeros’vector.). D : P × T → N denotes the
time-delay matrix associated with outgoing arcs. The default
value of the element D(p, t) of D is zero ts. D(p, t) of D is
equal to the time delay of the outgoing arc if a transition t ∈ T
is connected to an output place p ∈ t•. Note that D(p, t) can
be greater and equal than zero ts. It is assumed that for all arcs
directed from places to transitions, time-delay is considered as
one (ts). ∇P : ∇ × P → {0, 1} is the relation matrix that
specifies the connections directed from time elements h ∈ ∇
to places p ∈ P . Thus ∇P (h, p) = 1 if h ∈ ∇ maps to p ∈ P ;
otherwise, ∇P (h, p) = 0. ∇T : ∇×T → {0, 1} is the relation
matrix that specifies the connections directed from transitions
t ∈ T to time elements h ∈ ∇. The element ∇T (h, t) = 1 if
t ∈ T maps to h ∈ ∇; otherwise, ∇T (h, t) = 0. An example
TdAPN model is shown in Fig. 3.

Figure 3. An example of the proposed TdAPN.

In TdPNs with firing delay, tokens in transition (flow)
through arcs are not observed graphically during the firing
process. These tokens are called as flowing tokens in this
work. However, one needs to observe and know the state of
flowing tokens, besides the state of the system. In TdAPN,
S(k) := {M(k),∇M (k),∇R(k)} is the complete state of the
GTdAPN at time k, where it can be considered in two parts as
the state of the system ( M(k) ) and the state of time elements
(∇M (k),∇R(k)). Here, ∇M (k) : ∇ → N represents the time
element vector at time k and ∇R(k) : ∇ → N represents the
remaining time vector assigned to time elements at time k.

In TdAPN, a firing process of an enabled transition t ∈ T
starting at time k = λ, λ ∈ N, is represented by (t)λ. Here,
a transition t ∈ T is enabled at time k iff it is enabled at
M(k), that is iff M(p) ≥ N(p, t) ≥ 1 for all p ∈ •t,



where (t)λ /∈ F (k), λ < k. Here, F (k) := {(t)λ|λ ≤
k < (λ + 1) + max∀p∈t•{D(p, t)}, t ∈ T} is a set of fir-
ing processes of GTdAPN which includes active firing pro-
cesses (t)λ started previously and have not finished yet, and
newly started at time k = λ. It is assumed that once a fir-
ing process (t)λ ∈ F (k) concerning to enabled t ∈ T starts
at time k = λ, another firing process of this t is not able to
start again during the firing process (t)λ. t is reconsidered for
enabledness after its related firing process (t)λ ends at time
k = (λ + 1) + max∀p∈t•{D(p, t)}. E(GTdAPN ,M(k))
represents the set of transitions of GTdAPN which are en-
abled at M(k). A transition t ∈ T can fire at any time k iff
t ∈ E(GTdAPN ,M(k)).

3.2. The Time-Element

In TdAPN, in order to show the state of flowing tokens
graphically, a new triangular shaped graphical element such as
a time element is introduced. This new element is associated
with outgoing arcs in this work. Examples of the time element
are shown in Fig. 4 and Fig. 5.

Figure 4. The representation of a time element h ∈ t • ∇ at
time k.

The time element h ∈ t • ∇ is composed of four parts as
follows (See Fig. 4), where t • ∇ := {h ∈ ∇|∇T (h, t) = 1}
describes a finite post set of time elements concerning to the
transition t ∈ T :

• Right corner indicates the outgoing arc’s deterministic
time-delay (∇D(h, t) or D(p, t)). Here, ∇D : ∇×T →
N denotes the reshaped time-delay matrix for time el-
ements as given in (1). Moreover, in order to prevent
any confusion, a filled triangular indicator at the inner
corner of the time element is used to indicate the arc’s
time-delay.

∇D(h, t) =

{
D(p, t) ,∇P (h, p) = 1 ∧∇T (h, t) = 1
0 , otherwise

(1)

• Line at the bottom corner denotes the outgoing arc’s
weight (∇O(h, t) or O(p, t)). Here, ∇O : ∇× T → N
denotes the reshaped weight matrix for time elements as
given in (2). It is no need to indicate the middle line and
weight since the weight of arc is 1.

∇O(h, t) =

{
O(p, t) ,∇P (h, p) = 1 ∧∇T (h, t) = 1
0 , otherwise

(2)

• Left corner indicates the remaining time (∇R(h)).
Here, ∇R(h) represents the remaining time of flowing
tokens assigned to the time element h ∈ t•∇ by ∇R(k).
The remaining time-delay next to the left corner is indi-
cated since it is greater than 0 ts.

• Inside the triangle indicates the number of flowing to-
kens (∇M (h) = ∇O(h, t)). Here, ∇M (h) represents
the number of tokens assigned to the time element h ∈
t•∇ by ∇M (k). Moreover, if 1 ≤ ∇R(h) ≤ ∇D(h, t),
then it means tokens are visible in the time element
h ∈ t • ∇ and are being transmitted over the time el-
ement. If ∇R(h) = ∇D(h, t) + 1 ts, then it means
transition of tokens starts.

Figure 5. (a)-(f) Examples of the Time Element.

Some examples of the time element are given in Fig. 5. Here, in
Fig. 5.a, the time element h1 indicates no active firing process
with unit time delayed and unit weighted arc. In Fig. 5.b, the
time element h2 shows no active firing process with 2 time de-
layed and 2 weighted arc. In Fig. 5.c, it indicates a firing process
started newly (at k = λ ). Here, note that left corner of the time
element h2 indicates the time delay in order to make token(s)
visible inside the output place connected to h2. In Fig. 5.d, two
flowing tokens are transmitted through the time element h2 and
they would become visible in the output place after 1 ts elapsed.
In Fig. 5.e, three flowing tokens transmit through the time ele-
ment h3 and they would become visible in the output place after
4 ts . In Fig. 5.f, five flowing tokens transmit through the time
element h4 and they would become visible in the output place
after 2 ts elapsed. Note that flowing tokens are transmitted as
the number of the arc’s weight. In Fig. 5.g, the time element
h5 indicates no active firing process with zero time delayed and
unit weighted arc. In Fig. 5.h, it indicates a firing process started
newly, but no token appears in the time element h5 at the next
time instant due to the zero time delayed arc. It appears in the
output place connected to the time element h5.

3.3. The Firing Process

In practice, system activities and delays such as timer op-
erations, preparations, known delays, etc. can be considered as
exact time-delays, and starting, ending, activating, controlling
points, etc. can be considered as time-instants. A firing pro-
cess concerning to transition t ∈ T can be described in terms
of time-delays and time-instants. In order to obtain the true
model, where the system activities are dynamic and in motion,
the model can be best described by interpreting time as firing
durations.

In TdAPN, a firing process (t)λ concerning to the transition
t ∈ T is expressed in three parts in terms of time-instants as
starting time-instant, ending time-instant for an output place and
ending time-instant for the firing process.



3.3.1. Starting time-instant

It is a time-instant denoted by λ ∈ N. It shows the start-
ing time-instant for the firing process (t)λ, where this process
starts and the enabled transition t ∈ T fires at time k = λ.
At time k = λ, concerning tokens in all input places p ∈ •t
becomes unavailable for another processes and these tokens are
graphically illustrated by unfilled tokens. At the next time in-
stant k = (λ + 1), these tokens become temporarily invisible
in input places and are transferred to concerning time elements
∀h ∈ t • ∇ as the number of ∇O(h, t). Once a firing process
concerning to the transition t starts, this transitions is consid-
ered as disabled until its firing process is finished completely.

3.3.2. Ending time-instant for an output place

It shows the ending time-instant for an output place p ∈ t•
in the firing process (t)λ, where the number of ∇O(h, t) flow-
ing tokens completes their transition and appears in this output
place at time k = (λ+ 1) +D(p, t).

3.3.3. Ending time-instant for the firing process

It shows the completely ending time-instant for the firing
process (t)λ, where the transition t ∈ T completes its fir-
ing process at time k = (λ + 1) + max∀p∈t•{D(p, t)} so
that the transition t is reconsidered for enabledness. Note that
dt = max∀p∈t•{D(p, t)} + 1 ts, where dt indicates the com-
plete time of (t)λ concerning to t ∈ T and 1 ts comes from the
maximum time-delay among ingoing arcs. Moreover, dt ≥ 1 ts
since the time-delay of ingoing arcs is one ts and the minimum
time-delay of an outgoing arc is zero ts. It can be considered
that the value of dt in TdAPN is equal to be the value of dt in
TdPN.

Figure 6. For TdAPN, (a)-(e) Stages of the Firing Process at
each ascending time slot.

An animated example of a firing process (t)λ is given in
Fig. 6. At time k ≤ λ, there are two options for the net such
that the (t)λ concerning to the enabled t can be started or can
be postponed. (t)λ can be started at any time k (not necessarily
immediately) since the transition t is enable. These occurs two
distinct situations at the same time k. The choice from between
these situations would be called as the event selection and it
would affect only ∇R(h). In the example, no firing process
starts at time k < λ ((t)λ is postponed.) even if the transition
t is enable (See Fig. 6.a). At time k = λ, the firing process
(t)λ starts and concerning transition t is fired. The token (as the
weight of the ingoing arc) in the input place p1 ∈ •t becomes
unfilled (See Fig. 6.b). At time k = λ + 1, the flowing token

resides in the time element h ∈ t•∇ and it is being transmitted
through the time k ∈ [λ+1, λ+2] (See Fig. 6.c-d). At time k =
λ + 3, where D(p2, t) = 2 ts, the token appears in the output
place p2 (See Fig. 6.e). The firing process (t)λ is completely
finished at time k = λ+ 3, where dt = 3 ts.

4. Example
In this section, we consider the TdAPN shown in

Figure 3 as an example. This TdAPN is described
as GTdAPN (P, T,∇, N,O, S0, D,∇P ,∇T ), where P =
{p1, p2, p3}, T = {t1, t2}, ∇ = {h1, h2, h3},

N =

1 0
1 0
0 2

, O =

0 1
0 1
2 0

, D =

0 2
0 1
2 0


∇P =

1 0 0
0 1 0
0 0 1

, ∇T =

0 1
0 1
1 0


S0 = {

[
1 1 0

]T
,
[
0 0 0

]T
,
[
0 0 0

]T } .The complete time
of firing processes concerning to t ∈ T are dt1 = dt2 = 3 ts.

An animated example of all possible firing processes for
the given TdAPN is depicted in Fig. 7. Here, 8 complete states
(S = {M,∇M ,∇R}) are found for the given TdAPN as given
in Table 1. Relations among states are shown in Fig. 8, where
square boxes indicate relaxed states, which are identical to un-
timed PN’s; circular boxes indicate dynamic states, where to-
kens are being transmitted; arrows in dotted lines denote the
event selection, whereas straight lines denote the 1 ts time de-
lay elapsed; dotted boundaries denote the event selection area,
where M and ∇M are identical.

Figure 7. The example of all possible firing processes for the
given TdAPN.

5. Conclusion
The proposed TdAPN represents a new notion for Deter-

ministic Timed Arc Petri Nets and provides corresponding nota-



Table 1. The complete states for the given TdAPN.

S E F M ∇M ∇R

S0 {t1} {∅} [1 1 0]T [0 0 0]T [0 0 0]T

S1 {t1} {(t1)λ} [1 1 0]T [0 0 0]T [0 0 3]T

S2 {∅} {(t1)λ} [0 0 0]T [0 0 2]T [0 0 2]T

S3 {∅} {(t1)λ} [0 0 0]T [0 0 2]T [0 0 1]T

S4 {t2} {∅} [0 0 2]T [0 0 0]T [0 0 0]T

S5 {t2} {(t2)λ} [0 0 2]T [0 0 0]T [3 2 0]T

S6 {∅} {(t2)λ} [0 0 0]T [1 1 0]T [2 1 0]T

S7 {∅} {(t2)λ} [0 1 0]T [1 0 0]T [1 0 0]T

Figure 8. Relations among the complete states of the given
TdAPN.

tion, where deterministic time delays assigned to arcs are inter-
preted as firing. Proposed time element approach allows user to
observe temporarily invisible tokens whereas these are not ob-
served in TdPNs graphically. It also gives information about the
related arc, the whole firing process and corresponding flowing
token(s). The concept is clear and concise. TdAPN is used with
unit time in terms of appropriate time slots which is readily han-
dled with computers in practical applications. Thus, we expect
the model constructed by TdAPN could be easily implemented
in certain time-delayed systems and related algorithms. Time
durations such that exact time labels attached to outgoing arcs
have no time intervals so that using deterministic time values
instead of time intervals may provide less complexity and may
decrease the computational time. It may also provide plainness
for implementing algorithms. Furthermore, redundant transi-
tions and places from the untimed PN model may be removed
by using TdAPN.

In this work, the time element and the firing process of
TdAPN are introduced. Using the proposed approach, TdAPN
is able to give a complete model for timed delay systems. Thus,
one may able to see the complete picture of the system with de-
terministic time delays. Next future direction will include con-
struct mathematical relations in order to compute the complete
state of TdAPN at the next time instant.
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[19] Yufka, A., Özkan, H.A. and Aybar, A., ”A Formal
Method and Novel Graphical Representation for Deter-
ministic Timed-Arc Petri Nets”, in the National Conf. on
Otomatik Kontrol Ulusal Toplantisi, Turkey, 2016, pp. 209-
213.

[20] Aybar, A. and Iftar, A., ”Deadlock Avoidance Controller
Design for Timed Petri Nets Using Stretching”, IEEE Sys-
tems Journal,, vol. 2, no. 2, pp. 178-188. 2008.


