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Abstract
In radar systems, interference between the transmit signal
and communication signals possibly existing in the same
spectrum band is a serious concern. As a possible solu-
tion to this problem, cognitive radars having transmit sig-
nals whose spectra contain notches are proposed. Two algo-
rithms named SCAN and SHAPE can be used for designing
such radar transmit signals with desirable spectral charac-
teristics. The SCAN algorithm can also reduce sidelobes of
the temporal autocorrelations of the designed sequences via
some additional constraints. In this manuscript, we intro-
duce generalizations of both SCAN and SHAPE algorithms
for multiple-input multiple-output (MIMO) radar systems.
SCAN and SHAPE are both iterative algorithms employing
fast Fourier transform (FFT). Hence, they allow design of
long sequences in an efficient manner. We also provide nu-
merical simulation examples of MIMO SCAN and MIMO
SHAPE algorithms comparing their performances against
each other.

1. Introduction
Recently, cognitive radar has drawn the attention of many

researchers [1]. Put simply, cognitive radar can adapt itself
to the changing dynamics of the environment. It can be em-
ployed when there is a possibility for the radar transmit sig-
nal to interfere with signals emenating from other sources such
as local communication systems, navigation systems, or mili-
tary communication systems whose operating frequency band
might overlap with the spectral band of the radar transmit sig-
nal. This overlap could be prevented to a certain degree by de-
signing radar transmit signals with spectral notches (stopbands)
over the interfering frequency bands. There exist various works
proposing design of such radar transmit signals with desirable
spectral characteristics [2], [3], [4].

In this manuscript, we first review two existing techniques
that are named as SCAN (stopband cyclic algorithm-new) [5]
and SHAPE [6] algorithms which have been proposed for de-
signing radar transmit signals with some spectral domain con-
straints. Differing from the SHAPE algorithm, the SCAN al-
gorithm also aims at reducing sidelobe levels of the temporal
autocorrelations of the designed sequences via some additional
constraints. Then, we utilize SCAN and SHAPE for design-
ing transmit signals of multiple-input multiple-output (MIMO)
radar systems and present some simulation examples.

Notation: Bold lowercase letters denote vectors while bold
uppercase letters denote matrices. [·]H and [·]T represent Her-
mitian and transpose operations, respectively, and || · || denotes
the Euclidean norm for vectors and matrices. (.)∗ is reserved

for denoting conjugate of complex numbers and the phase of a
complex number is represented by arg{·}. X[n,m] shows the
(n,m)th element of the matrix X. The normalized cyclic fre-
quency values ranging from 0 to 1 Hz. have been used through-
out the manuscript.

2. SCAN and SHAPE Algorithms
In this section, we briefly review the SCAN and SHAPE

algorithms for single-input single-output (SISO) systems.

2.1. SCAN Algorithm

The SCAN algorithm was proposed for designing unimod-
ular (i.e. having a constant modulus of unity) sequences by ap-
plying constraints both in temporal and spectral domains [5].
SCAN can be computed by utilizing the fast Fourier transform
(FFT), and hence, is computationally quite efficient. Another
advantage of the SCAN algorithm is that it can be initialized by
random phased unimodular sequences of large lengths. Every
realization of the algorithm with random initialization produces
a different new sequence with similar good properties.

Let us assume that the spectrum of the complex valued
length-N radar transmit sequence, x[n], for n = 1, 2, . . . , N ,
to be designed has notches in the following set of normalized
frequency bands

Ω =

Ns⋃
s=1

(fs1, fs2) (1)

where (fs1, fs2) corresponds to the sth stopband and Ns repre-
sents the total number of stopbands. The number of samples,
Ñ , for calculating the discrete Fourier transform (DFT) is cho-
sen large enough for densely covering Ω. Here, the (n,m)th

element of Ñ × Ñ DFT matrix FÑ is given as

FÑ [n,m] =
1√
Ñ

ej2π
nm
Ñ ; n,m = 0, . . . , Ñ − 1. (2)

A matrix S is created by including the columns of FÑ corre-
sponding only to the normalized frequencies within Ω. Another
matrix G is formed by the remaining columns of FÑ . Then,
suppression of spectral power of x[n] within Ω can be realized
by solving the following minimization problem [5]

min
x,α

J1(x,α) =
∥∥x̃−Gα

∥∥2
subject to |x[n]| = 1 n = 1, . . . , N

(3)

where x̃ = [x[1] . . . x[N ] 0 . . . 0]T
Ñ×1

and α is a vector of
auxiliary variables. In addition to spectral suppression, SCAN



can also manage to reduce autocorrelation sidelobes of x[n] by
utilizing the CAN (cyclic algorithm-new) algorithm [7]. CAN
aims to minimize the performance metric of integrated sidelobe
level (ISL) which is defined [7] as

ISL = 2

N−1∑
k=1

|rx[k]|2. (4)

In Eqn. (4), rx[k] denotes the aperiodic autocorrelation of x[n].
It is defined [7] as

rx[k] =

N∑
n=k+1

x[n]x∗[n− k] = r∗x[−k]; k = 0, . . . , N − 1.

(5)
Utilizing 2N × 2N DFT matrix F2N , suppression of au-

tocorrelation sidelobes can be accomplished by solving the fol-
lowing minimization problem [5]

min
x,v

J2(x,v) =

∥∥∥∥FH2N [ x
0N×1

]
− v

∥∥∥∥2
subject to |x[n]| = 1, n = 1, . . . , N

|v[n]| = 1√
2
, n = 1, . . . , 2N

(6)

where x = [x[1] x[2] . . . x[N ] ]T is the designed sequence and
v = [v[1] v[2] . . . v[2N ] ]T is a constant-valued vector.

The two minimization problems in Eqns. (3) and (6) can
be combined so that both spectral stopband and temporal auto-
correlation sidelobe constraints are combined in a single mini-
mization problem which can be formulated [5] as

min
x,α,v

J(x,α,v) = λ
∥∥x̃−Gα

∥∥2
+ (1− λ)

∥∥∥∥FH2N [ x
0N×1

]
− v

∥∥∥∥2
subject to |x[n]| = 1, n = 1, . . . , N

|v[n]| = 1√
2
, n = 1, . . . , 2N

(7)

where 0 ≤ λ ≤ 1 is a weighting factor controlling the relative
weight of the two cost functions J1 and J2.

2.2. SHAPE Algorithm

Especially for wideband radar applications, designing se-
quences by shaping their spectrum becomes important. Un-
like the SCAN algorithm, the SHAPE algorithm is purely based
on spectral constraints [6]. For a wideband radar, a waveform
might be required to contain notches in certain predefined spec-
tral bands. The SHAPE algorithm can manage shaping of the
spectrum in a computationally efficient manner by employing
FFT and with the aid of some predefined upper and lower spec-
tral bounds.

The cost function to be minimized can be expressed as

min
x,θ

∥∥FHNx− y � ejθ
∥∥2

subject to |x[n]|2 = h[n], for n = 1, . . . , N
(8)

where� represents element-wise product operation, x ∈ CN×1

is the designed sequence, y ∈ RN×1 is the nonnegative valued
desired spectrum magnitude, and FN ∈ CN×N represents the
unitary DFT matrix. θ ∈ RN×1 is an auxiliary phase vector.

The time-domain envelope constraint is signified by the vector
h = [h[1] h[2] . . . h[N ] ]T which could be formed by utilizing
common window functions (rectangular, raised cosine, triangu-
lar, etc.) [6].

Instead of fitting to an exact spectrum as y in Eqn. (8),
one can allow the amplitude of the spectrum to stay between an
upper spectral bound, u(f), and a lower spectral bound, l(f).
These bound functions can be approximated as vectors u =
[u[1] u[2] . . . u[N ]]T and l = [l[1] l[2] . . . l[N ]]T sampled on
the used frequency grid points. Relaxing on the exact spectrum
shape by employing bounds makes the problem easier and more
manageable. Thus, one can search for a spectrum, z, with its
modulus contained within the upper and lower spectral bounds.
The accordingly modified minimization problem becomes [6]

min
x,β,z

∥∥FHNx− βz
∥∥2

subject to |x[n]|2 = h[n], for n = 1, . . . , N

|z[n]| ≤ u[n], for n = 1, . . . , N

|z[n]| ≤ l[n], for n = 1, . . . , N.

(9)

In Eqn. (9), β is an auxiliary scale factor introduced to compen-
sate for any likely energy mismatch and phase offset between
the designed time domain sequence, x, and the spectrum, z.

3. MIMO SCAN and MIMO SHAPE
In this section, we extend the SCAN and SHAPE algo-

rithms for MIMO systems. In generalizing SISO versions of
SCAN and SHAPE algorithms, we have been inspired by [8]
where the CAN algorithm was generalized into MIMO systems.
By transmitting orthogonal waveforms, MIMO radar systems
provide better detection performance, improved parameter esti-
mation, and better resolution [8].

Both MIMO SCAN and MIMO SHAPE algorithms are ini-
tialized with a set of sequences which can be represented as
columns of the following matrix

X(0) = [ x1 | x2 | . . . | xM ]N×M (10)

where themth column represents themth initial sequence xm =
[xm[1] xm[2] . . . xm[N ] ]T and the superscript of the matrix
denotes the iteration number. Note that there are M initial se-
quences of length N . The aperiodic cross-correlation of two
sequences xm1 and xm2 can defined [8] as

rm1,m2 [k] =

N∑
n=k+1

xm1 [n]x∗m2
[n− k] = r∗m1m2

[−k] (11)

where m1,m2 = 1, 2, . . . ,M and n = 1, 2, . . . , N . It is
desired to have low level cross-correlations between designed
transmitted sequences. Good cross-correlation means that any
transmitted waveform is approximately uncorrelated with other
time-shifted transmitted waveforms.

The cross-energy spectral density (CESD),Pm1,m2(f), can
be defined [9] via the discrete-time Fourier transform (DTFT)
of rm1,m2 [k] as

Pm1,m2(f) =

∞∑
k=−∞

rm1,m2 [k]e−j2πfk. (12)



3.1. MIMO SCAN Algorithm

Before outlining the steps of the MIMO SCAN algorithm,
the following input parameters are to be determined. The in-
put matrix X

(0)
N×M in Eqn. (10) involving the initial set of se-

quences, the weighting parameter λ in Eqn. (7), the DFT size
of the algorithm Ñ , and the set of frequency bands, Ω, to be
suppressed are assigned first. Then, the matrix G is formed as
explained prior to Eqn. (3). After those required initializations,
the steps of the MIMO SCAN algorithm can be executed as fol-
lows:
Step #1: Form the zero-padded matrix, X̃Ñ×M , in an anal-
ogous manner to x̃ in Eqn. (3). Then, calculate A =
GHX̃Ñ×M .
Step #2: Form the zero-padded matrix, X2N×M , and compute
2N ×M matrix, V = 1√

2
ejarg{FH

2NX2N×M}.
Step #3: Rename the first N rows of GA and F2NV as C1

and C2, respectively.
Step #4: Find the resultant matrix at iteration i as X(i) =
ejarg{λC1+(1−λ)C2}.
Iteration: Perform Step 1 through Step 4 for a predetermined
number of iterations.

3.2. MIMO SHAPE Algorithm

MIMO SHAPE algorithm also requires some initial input
parameters. The matrix X

(0)
N×M contains M initial sequences

of lengthN as its columns. TheM×1 vector of auxiliary scale
factors is initilized as β(0) = [1 1 . . . 1]T . The upper, u =
[u[1] u[2] . . . u[N ] ]T , and lower, l = [l[1] l[2] . . . l[N ] ]T ,
bound vectors for spectral suppression and the window vector,
h = [h[1] h[2] . . . h[N ] ]T , for forming time-domain enve-
lope are assigned. After determining these initial parameters,
the steps of the MIMO SHAPE algorithm are performed as fol-
lows.
Step #1: Initialize the temporary matrix QN×M = FHNX

(0)
N×M

and divide the mth column of QN×M by the corresponding
scalar value, βm, which is the mth element of the vector β(0).
Step #2: In parallel to the pseudocode of the SISO SHAPE al-
gorithm given in [6], perform comparisons of the elements in
each and every column of the temporary matrix QN×M with
the corresponding elements of the upper, u, and lower, l, spec-
tral bound vectors. Via execution of these comparisons, deter-
mine the elements of the auxiliary matrix Z(i) at the ith iter-
ation. In these comparisons; if Q[n,m] > u[n], then assign
Z(i)[n,m] = u[n] Q[n,m]

|Q[n,m]| ; if Q[n,m] < l[n], then assign

Z(i)[n,m] = l[n] Q[n,m]
|Q[n,m]| . Otherwise, assign Z(i)[n,m] =

Q[n,m].
Step #3: Calculate the mth element of the vector β(i) at the
ith iteration using the mth columns of both X(i−1) and Z(i), as

βm =
ZH [n,m]FH

NXN×M [n,m]

‖Z[n,m]‖2

Step #4: Compute the mth column of the matrix V(i) by mul-
tiplying the mth column of FNZ(i) by the corresponding mth

element of the vector β(i).
Step #5: In parallel to the pseudocode of the SISO SHAPE
algorithm given in [6], calculate the elements of the mth col-
umn of X(i) using preassigned window vector h and the
corresponding mth column of V(i). If V[n,m] 6= h[n],
then assign X(i)[n,m] =

√
h[n] V[n,m]

|V[n,m]| . Otherwise, assign

X(i)[n,m] = V[n,m].
Step #6: Calculate QN×M = FHNX

(i)
N×M and divide the mth

column of FHNX
(i)
N×M by the corresponding scalar value, βm,

where βm is the mth element of the vector β(i).
Iteration: Perform Step 2 through Step 6 for a predetermined
number of iterations.

4. Simulation Examples
In the following, we present simulation examples of the

MIMO SCAN and MIMO SHAPE algorithms developed above.
Through the examples, we compare performances of the two al-
gorithms against each other. In all of the examples, both algo-
rithms are initialized with uniformly distributed random phased
unimodular sequences of length N = 100.

4.1. Simulation Example for MIMO SCAN

The length of the sequences to be designed and the num-
ber of designed sequences are taken as N = 100 and M = 2,
respectively. Thus, when finished, the algorithm produces two
unimodular sequences as columns of a 100 × 2 matrix. The
weighting factor λ introduced in Eqn. (7) determines the prefer-
ence between the temporal and spectral constraints and is cho-
sen as λ = 0.8 favouring spectral shaping more than lower-
ing correlation sidelobes. Placement of a spectral notch in the
normalized frequency band, Ω = [0.65, 0.8), is required for
both designed sequences. The FFT size is taken as Ñ = 1000
and the number of iterations is fixed as 2 × 105. The resul-
tant designed sequences are shown in Fig. 1. It is interesting
to observe that similar to the individual spectra in Figs. 1a
and 1b, the CESD of the designed sequences in Fig. 1c also
contains a spectral notch in the required stopband. Moreover,
cross-correlation of the designed sequences displayed in Fig. 1d
remains low obeying almost zero cross-correlation requirement
for nearly orthogonal sequences. Finally, sidelobes of the auto-
correlations of both designed sequences are greatly suppressed
as indicated in Figs. 1e and 1f.

4.2. Simulation Example for MIMO SHAPE

Again, we take the sequence length as N = 100 and the
number of designed sequences asM = 2. Except for the notch,
the spectral upper bound, u, is merely applied to force the spec-
trum below 0 dB across the whole frequency range. Over the
stopband, Ω = [0.65, 0.8), the designed spectrum is forced to
be under −40 dB. No spectral lower bound, l, is applied in the
design. The FFT size is taken to be Ñ = 1000 and the num-
ber of iterations is fixed as 2 × 105. The resultant designed
sequences can be seen in Fig. 2 where the employed spectral
upper bound is shown using a green line. As can be seen in
Figs. 2a and 2b, the spectra of both designed sequences con-
tain the desired notch of −40 dB as specified by the employed
spectral upper bound. It is interesting to see from Fig. 2c that
the CESD of the designed sequences contains a deeper notch
of −60 dB although it does not obey the spectral upper bound
at other frequency values. Finally, cross-correlation sidelobes
of the designed sequences remain quite low as seen in Fig. 2d
providing near orthogonality of the designed sequences. Fur-
thermore, sidelobes of the autocorrelations of both designed se-
quences are greatly suppressed as indicated in Figs. 2e and 2f.

4.3. Performance Investigation

We can mesaure the performance of MIMO SCAN and
MIMO SHAPE algarithms by comparing certain performance
metrics of the initial and final designed sequences. Integrated



Sidelobe Level (ISL) defined in Eqn. (4) and Merit Factor (MF)
which is defined below are two of these metrics. We can also
measure the stopband level of the designed spectra. Table 1 dis-
plays the ISL values of the initial and final designed sequences
in the above subsection by using MIMO SCAN and MIMO
SHAPE algorithms. One should keep in mind that it is desir-
able to obtain ISL values as low as possible. Notice that ISL
values of the sequences designed by MIMO SHAPE algorithm
is worse than the initial sequences. This is because the SHAPE
algorithm constrains the spectrum of the designed sequences
but not their autocorrelations. On the other hand, looking at
Eqn. (7) one can see that when λ < 0.5 the MIMO SCAN
algorithm constrains the correlations of the designed sequences
more than their spectra. This is apparent in the third row of
Table 1 (λ = 0.2) where the ISL values are lower than that of
initial sequences. When λ = 0.8, on the contrary, spectra of
the designed sequences are constrained more. Hence, the ISL
values in the fourth row are worse, as expected.

Table 1. ISL performance of MIMO algorithms

1st Sequence 2nd Sequence
Initial 8.538e+03 8.834e+03

MIMO SCAN (λ = 0.2) 1.0186e+03 759.7848
MIMO SCAN (λ = 0.8) 2.6824e+03 2.5194e+03

MIMO SHAPE 1.2554e+04 1.3386e+04

The MF can be defined [7], [8] as

MF =
|r(0)|2

N−1∑
k=−(N−1)

k 6=0

|r(k)|2
. (13)

Similar to ISL, the metric of MF also measures suppression of
autocorrelation sidelobes, although, contrary to ISL, MF is de-
sired to be as large as possible. Table 2 represents MF values of
the initial and final designed sequences via the MIMO SCAN
and MIMO SHAPE algorithms. Similar to the results in Table
1, MF values of the designed sequences via MIMO SHAPE are
worse than that of initial sequences. Again, the MF values of
MIMO SCAN with λ = 0.2 are better compared to the values
obtained when λ = 0.8.

Table 2. MF performance of MIMO algorithms

1st Sequence 2nd Sequence
Initial 1.1712 1.1319

MIMO SCAN (λ = 0.2) 9.8172 13.1616
MIMO SCAN (λ = 0.8) 3.7280 3.9692

MIMO SHAPE 0.7966 0.7470

By virtue of their definitions, the ISL and MF performance
metrics are concerned with the temporal autocorrelation side-
lobes, but not spectral properties. Hence, to evaluate the spec-
tral performances of MIMO SCAN and SHAPE algorithms, we
measure the stopband levels in (dB). Table 3 exhibits the spec-
tral suppression levels of the initial and the final designed se-
quences via the MIMO SCAN and MIMO SHAPE algorithms.
It can be seen that, in contrast to ISL and MF, when the value
of λ is larger, performance of MIMO SCAN is better. This is
because, when λ > 0.5 the spectrum is constrained more than
autocorrelation. Moreover, performance of MIMO SHAPE is

(a)

(b)

(c)

(d)

(e)

(f)

Figure 1. MIMO SCAN example. a) Initial and final spec-
tra of the first designed sequence. b) Initial and final spectra
of the second designed sequence. c) CESDs of initial and fi-
nal designed sequences. d) Aperiodic cross-correlations of the
initial and final designed sequences. e) Initial and final auto-
correlations of the first designed sequence. f) Intial and final
autocorrelations of the second designed sequence
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(b)

(c)

(d)

(e)

(f)

Figure 2. MIMO SHAPE example. a) Initial and final spec-
tra of the first designed sequence. b) Initial and final spectra
of the second designed sequence. c) CESDs of the initial and
final designed sequences. d) Aperiodic cross-correlations of the
initial and final designed sequences. e) Initial and final auto-
correlations of the first designed sequence. f) Intial and final
autocorrelations of the second designed sequence

much better than that of MIMO SCAN. This is no surprise be-
cause, by design, the SHAPE algorithm solely constrains the
spectrum and is not concerned with autocorrelation sidelobes.

Table 3. Stopband levels of MIMO algorithms (dB)

1st Sequence 2nd Sequence
Initial -17.3108 -25.9472

MIMO SCAN (λ = 0.2) -9.0008 -8.0448
MIMO SCAN (λ = 0.8) -23.5015 -24.0894

MIMO SHAPE -63.9190 -70.8986

5. Conclusion
In this manuscript, we have proposed generalizations of

the radar waveform design methods of SCAN and SHAPE
for MIMO systems. We presented the implementation steps
of MIMO SCAN and MIMO SHAPE algorithms. We per-
formed simulation examples of both algorithms for designing
two nearly orthogonal unimodular sequences. We calculated
some temporal and spectral performance metrics to compare
performances of MIMO SCAN and MIMO SHAPE algorithms
against each other. The SCAN algorithm can weight both tem-
poral and spectral constraints whereas the SHAPE algorithm
performs waveform design based solely on spectral constraints.
Finally, although in our simulation examples we designed two
unimodular sequences, we would like to note that the number
of designed sequences can be increased straightforwardly.
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