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Abstract
Suspensions are systems produced to minimize the effect

of road surface defects on the vehicle, and are divided into
three as passive, semi-active and active suspensions. In this
study, quarter car suspension model is examined with linear
quadratic regulator (LQR) and model predictive controller
(MPC), respectively. Quanser active suspension experiment
set is used to obtain experimental results. First, LQR which
minimizes the performance criteria related to state and in-
put signals is used to control the system. Then, MPC which
is very popular in the industry is used as a second control
method. After obtaining nominal system responses for both
control methods, comparison between LQR and MPC un-
der different load characteristics and parameter variations
is done. By changing the road characteristics and the plant,
and by applying disturbance to the system, system responses
with LQR and MPC are examined and compared.

1. Introduction
The suspension system, generally contains spring, damper

and axle mechanism, and the main purpose of it is to reduce the
effect of road disturbances. Suspension systems can be divided
into three subcategories as passive, semi-active and active sus-
pension. The active suspension system has an actuator which
distinguishes it from other suspension types, and the active sus-
pension system can be used in transportation, especially road
and railways to minimize the disturbances caused by road.

Several control methods have been proposed in the liter-
ature for the control of the active suspension system. Some
of these control methods include Skyhook, LQG (Linear
Quadratic Gaussian control), LQR (Linear Quadratic Regula-
tor), Delayed Resonator and H∞ [1-2].

Within the scope of this study, it is aimed to examine the
quarter vehicle suspension model, to control the active suspen-
sion system with two different methods which are LQR and
MPC, to obtain both simulation and experimental results of sys-
tem, and finally to compare the controllers under different load
characteristics and parameter variations.

Firstly, the system is controlled by LQR, which is an op-
timal control method and has numerous detailed researches in
the literature. Then, the system is controlled by using the MPC
method, which is very popular in the industry. Having a dy-
namic structure is the most important feature of MPC that sepa-
rates the method from the LQR which has a static structure. Af-
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ter that, simulation and experimental results for nominal system
are obtained for both controllers. Finally, system with LQR and
system with MPC are compared by changing the road charac-
teristics, changing the plant, and applying disturbance. System
responses are examined and interpreted.

The main motivation of this study is that there are a few
studies in the literature where more than one method is applied
experimentally and the results are compared.

2. Active Suspension System
The suspension system generally consists of a spring, a

damper, and an axle mechanism and reduces the effect of the
road-related disturbances by the help of the spring and damper
elements it contains. The aim of the suspension systems is to
improve driving comfort, road holding, and stability.

Suspensions are divided into three groups which are pas-
sive, semi-active and active suspensions. While passive sus-
pension has fixed characteristics, characteristics of semi-active
suspension can be adjusted by changing the spring and damper
coefficients. Active suspension system, which is examined in
this paper, differs from other types due to its actuator it has that
suppresses the road disturbances by implementing the energy
directly to the system.

For this study, Quanser active suspension experiment set is
used since it has a stable system architecture, its interface which
is easily adaptable with MATLAB in real-time experience, it en-
ables different control methods to be applied, and it is a widely
used set in researches.

As it can be seen in Figure 1, the active suspension set con-
sists of three plates. The upper mass (blue plate) represents the
vehicle body, the middle mass (red plate) corresponds to one
of the tires of the vehicle, and the bottom mass (silver plate)
simulates the vertically moving road surface.

The Quanser active suspension system model consists of
two masses and one road disturbance, each supported by a
spring and a damper. The system has fundamentally two inputs
which are actuator force (Fc) and road disturbance (zr). The
actuator force is the manipulated variable and the road distur-
bance is the unmeasured disturbance. The outputs are selected
as tire displacement (x1) and body displacement (x2). This
disturbance profiles are applied to the system by using MAT-
LAB/Simulink. Since system model is derived in earlier stud-
ies, in this study it is not examined in detail. State, input, output
matrices and state space representation of the system are given
below.



Figure 1. The representation of the plates of active suspension
system.
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3. Control Methods
In this study, two methods are used to control the active

suspension system. Firstly, LQR is used for active suspension
system since it provides optimal control solutions and there are
numerous detailed researches about it. Then, the system is con-
trolled by using MPC which is a dynamic optimal control ap-
proach and becomes more widespread in industry.

3.1. Linear Quadratic Regulator

Designing efficient controllers for non-linear systems
which are able to provide desired system performance and also
have a basic design process with minimum cost is the funda-
mental problem in modern control theory. Most dynamical sys-
tems in nature are non-linear and the equations of these sys-
tems are difficult to solve, thus these systems are commonly
linearized by equations which are proper within a small region
around the operation point which provides a controllable struc-
ture because most of the control methods are designed for linear
systems.

The primary purpose of optimal control is to determine con-
trol signals which result in the system to satisfy some physical
constraints and extremize the desired performance criteria (per-
formance index or cost function). The Linear Quadratic Regu-
lator (LQR) is one of the most studied control problems in the
literature, and it has many applications. LQR is a specified form
of state feedback control method, and LQR technique makes op-
timal control decisions considering the states and control input
of the dynamical system [16].

The structure of the LQR control technique is same with
the structure of the state feedback control; however, the design

method of LQR differs from state feedback. The main differ-
ence between them is the calculation of the gain matrix K. LQR
algorithm solves the equation 3 to find an optimum gain matrix
that minimizes the quadratic cost function below:

J(u) =

∫ ∞
0

(xTQx+ uTRu)dt (3)

where Q is the cost structure to determine the importance of the
states and R is the regulator for control signal [17]. The weight-
ing matrix Q is a symmetric positive semi-definite matrix, while
R is a symmetric positive definite symmetric matrix [16].

The LQR problem can be explained as minimization with
weighting for the linear combinations of the states x and the
control input u. The matrix Q which is also called weighting
matrix represents the difference of the importance of the states
are to be controlled. Moreover, R defines the allowable aggres-
siveness of the control signal. For instance, large R values result
in a smaller control signal [16].

The LQR gain vector K can be calculated as in equation 4.
K = R−1BTP (4)

where P is a positive definite symmetric constant matrix which
can be obtained from the solution of the Algebraic Riccati Equa-
tion as shown in equation 5 [16] [14].

ATP + PA− PBR−1BTP +Q = 0 (5)

In the design of LQR controller, the key point is to determine
Q and R structures. Basically, there are numerous methods to
determine the Q and R matrices. In the project, the diagonal
weights are used for calculations as recommended by Quanser
(6) [3]. The method’s principle is to choose the weights as their
relative importance.

For instance, if 1 cm error is acceptable for x1 state, then
q1 = 1

1002
and if 1

60
radians error is acceptable for the x3 state,

then q3 = 602. Moreover, q1x12 = 1 when x1 = 1 cm and
q3x3

2 = 1 when x3 = 1
60
rad [18].

In the project, since Q is chosen as diagonal, the states have
been considered that they do not have any effect on each other
in terms of error punishment. Similar to Q, R represents pun-
ishment rate of the control signal. For instance, larger R values
cause smaller control signals.
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LQR weighting diagonal matrices Q and R are selected as in
equation 7 which are suggested by Quanser [3]. R is chosen as
two different values to observe the differences due to R. Then,
the optimal state feedback gain matrix is calculated by using
MATLAB (8) and implemented.

Q =

 450 0 0 0
0 30 0 0
0 0 5 0
0 0 0 0.1

 ;R1 = 0.01; R2 = 0.001 (7)

K = [ 24.6621 49.2526 68.6037 5.0940] (8)

After calculations, the Simulink diagram which includes both
real-time and simulation blocks is designed as in Figure 2.



Figure 2. Experiment system block diagram.

The orange colored block in the Simulink diagram is the
actual plant and the cyan colored block is the simulation block.
After running the experiment, real-time and simulation results
of the system can be compared. In this model, the surface dis-
turbance is given as a square wave.

In the real-time experiment, the surface disturbance is gen-
erated by a DC motor which is also controlled in a process
to generate square wave disturbance. The desired disturbance
is created in MATLAB/Simulink, then inserted to system via
Quanser hardware in the loop (HIL) analog write block. The
states of the system are acquired by using the accelerometer
sensor from Quanser HIL read analog blocks and calibrated.

Since the system is a real-time application, there are con-
straints such as actuator force. Also, the system has internal
safety constraints to protect itself from fatal errors which may
cause serious damage to the structure.

Two different R values are selected and results are ob-
served. When R is chosen as 0.01 and 0.001, the poles of the
system located at different points. Closed loop system poles for
R=0.01 and R=0.001 are given below in 9 and 10.

−→
λ R=0.01 =

−8.1159 + 14.5964i
−8.1159 + 14.5964i
−6.9916 + 57.8225i
−6.9916 + 57.8225i

 (9)

−→
λ R=0.001 =

 −54.183
−7.6387

−8.2385− 52.4759i
−8.2385 + 52.4759i

 (10)

3.2. Model Predictive Control

Model predictive control (MPC) has a long history in the
field of control engineering. MPC and receding horizon con-
trol are dated back to 1960s with Propoi (1963) who proposed
the moving horizon approach, and Lee and Markus (1967) who
have to foresee today’s MPC practice in their optimal control
textbook [19].

However, MPC became popular and started to use in numer-
ous control engineering areas in the 1980s after the first success-
ful application of model predictive heuristic control (MPHC)
algorithm by Richalet et al. on a Fluid Catalytic Cracking Unit
in 1978 [20].

MPC emerged in the industry due to its effectiveness for
solving multivariable constrained control problems. Since MPC
needs high computational power and has slower system re-
sponse, it is mostly used in process control areas such as power
plants, petrochemical, and refinery industries until the last two
decades [19].

After the 1990s, usage areas of MPC has been grown
greatly in the industry. When higher computational powered
machines which work better in real-time experiments becomes

affordable and widespread, MPC is started to use in the areas
which need faster system responses such as automotive, food
processing, metallurgy, aerospace, and defense industries [20].

In past 40 years, numbers of MPC algorithms have been es-
tablished; for instance, dynamic matrix control (DMC) by Cut-
ler and Ramaker (1979), internal model control (IMC) by Gar-
cia and Morari (1982) and generalized predictive control (GPC)
by Clarke et al (1987) [21]. The types of the plant models which
represent the system dynamics and the cost functions are the
main differences of all MPC algorithms mentioned above.

The main idea of the MPC control scheme is to use a model
of the plant to predict the future evolution of the system by opti-
mizing the controller signal. Figure 3 shows the basic structure
of MPC procedure.

Figure 3. Basic structure of MPC procedure [21].

MPC uses receding horizon principle. At each sample time
of the system, the first input of the optimized control signal is
applied to the system. Then, at the time t + 1, optimal control
problem is solved to find new control signal. This procedure is
called as receding horizon principle and this principle is com-
mon for all types of MPC algorithms which are shown in Figure
4. While the feedback information is collected from the plant
at each sample time, the receding horizon enables the plant to
perform at desired characteristics [21].

Figure 4. Receding horizon strategy [21].

MPC has three key points which are the model of the plant,
constraints of the real system, and the weight tuning. MPC al-
gorithm requires all of them for the state estimations, generat-
ing the control signal for real-time experiment, and providing
desired characteristics, respectively.

Working with a long range prediction is the most impor-
tant property which distinguishes the MPC from other control
methods. MPC achieves good performance against the limita-
tion from the process dead-time, nonminimum phase, and slow



process dynamic due to the predictions over the future horizon
[20].

For the calculation of each controller output, the system re-
sponse is predicted for a finite time horizon. Thus, there is an
iterative open loop optimization method which turns to closed
loop by the update of the feedback from system output [22].

Although LQR and MPC algorithm is similar in terms of
obtaining results by solving quadratic problems, LQR and pre-
dictive control differ in various ways. However, the essential
difference between them is calculation horizon. While predic-
tive control solves the optimization problem using in moving
time horizon, LQR solves the quadratic problem within a fixed
time window which is zero to infinity. Using a moving time
horizon window enables the controller to perform with hard
constraints on for real-time experiments [23].

In this experiment, MATLAB MPC Toolbox is used. While
using the MPC Toolbox, there are three steps for generating and
implementing the MPC into the plant. The first step is defining
the plant model, the second step is defining the MPC inputs and
outputs (IOs), and the third step is assigning the MPC param-
eters [24] [25]. Firstly, the system is defined in terms of state
space model which is the key point of the MPC design because
the whole process of prediction depends on the accuracy of the
plant model. Simulink MPC controller block requires a linear
plant model. As a first step of the design, plant model is identi-
fied in the previous section and imported to the MPC controller.
This defines the number of inputs and outputs of the system.

Then, the plant inputs and outputs should be defined cor-
rectly considering the behavior of the system. In active sus-
pension system, the actuator force is defined as the manipulated
variable and the road disturbance is defined as the unmeasured
disturbance. After that, the feedbacks (measured outputs) of the
MPC is chosen as all the states of the plant to make a better
comparison between LQR control structure as it can be seen as
in Figure 5 and Figure 6. After that, as it is shown in Figure
7, the constraints for MPC are defined by considering the real
system limitations.

Figure 5. MPC IO specifications.

Figure 6. MPC structure.

Figure 7. Constraints of MPC structure.

The weights of inputs and outputs are selected and the
weights determine the importance of the states error rate. If
a larger weight is selected, MPC becomes more sensitive to the
state. After the selections and definitions of the MPC parame-
ters, the system can be tuned by using performance tuning cri-
teria which are Robustness-Aggressiveness and Slower-Faster
State Estimation is shown in Figure 8. Moreover, the sample
time, the prediction horizon which determines the number of
future steps to be predicted by the controller, and the control
horizon which defines the number of parameters is used to cap-
ture the future trajectory [23].

Figure 8. Performance tuning of MPC.

After the parameter definitions, the controller is simulated
in MPC Toolbox using the scenario simulation. The scenario
setting is defined by considering the system structure and be-
havior against road disturbance. The references to the states are
given as zero because the positions of the plates remain steady
in a perfect control. In other words, the desired behavior of
the MPC is making the upper plate (zs) to be steady against the
road disturbance. Furthermore, the unmeasured disturbance is
selected as a pulse signal with 0.1 second period and 0.2 m/sec
magnitude which is generated by Quanser Quarc library of road
disturbance. After that, the simulation is observed against the
tuning of the MPC Toolbox and the controller is created for the
system. Then, the Simulink diagrams of simulation and real
system are designed and the plant results are acquired for both
simulation and real-time system.

4. Simulation and Implementation Results
for Nominal System

Simulation and implementation results for the nominal sys-
tem with LQR for R=0.001, LQR for R=0.01 and MPC are ob-
tained and given below, respectively. It is observed that, R pa-
rameter selection directly affects the control’s agresiveness by
allowing to use larger control signals. Also, MPC’s dynamic be-
havior is observed in experimental results. Also, it is observed
that LQR(R=0.001) controller has similar response with MPC
by using smaller control signal.



4.1. Simulation

Figure 9. Simulation responses for nominal system.

4.2. Implementation

Figure 10. Implementation responses for nominal system.

Figure 11. Implementation control signals.

Figure 12. Real-time response with different road disturbance
for three controllers.

5. Comparison Under Different Load
Characteristic and Parameter Variations

System responses of LQR and MPC methods are examined
and compared for three different conditions. First of all, the
road disturbance is changed, secondly, the plant is changed by
adding an extra mass to the upper plate, and finally disturbances
are applied to the upper plate.

5.1. Road Characteristics

The road disturbance is changed from 0.02 m to 0.035 m to
observe system behaviour for different controllers .

The real-time experiment is examined for different road dis-
turbance for LQR (R=0.01), LQR (R=0.001) and MPC. The
road disturbance is taken as 0.02 m during the project. For this
comparison, the road disturbance is changed into 0.035 m.

When the responses are analysed, the system with LQR
(R=0.01) has better response in terms of control signal while the
system with LQR (R=0.001) has better transient response with-
out oscillations and the system with MPC has better response
in terms of integral square error (ISE) and integral time square
error (ITSE) values of the upper plate position. In the Table 1
and Table 2, the green color represents the relatively best value
of errors among three controllers when the reference is 0.02 m,
and the blue color represents the best value when the reference
is 0.035 m.

Table 1. Comparison of LQR (R=0.01), LQR(R=0.001), and
MPC for ref=0.02 for nominal system.

LQR
(R=0.01)

LQR
(R=0.001) MPC

ISE 0.0033 0.0029 0.0028
ITSE 0.0329 0.0286 0.0282

IAE for
Control Signal 21.5846 39.1070 88.6940

ISE for
Control Signal 111.2853 349.5482 918.2082

When the Table 1 and Table 2 are examined, it can be said
that MPC has better performance in terms of ISE and ITSE val-
ues which causes larger cost due to larger control signal val-
ues. Moreover, LQR (R=0.01) causes less cost since the control



Table 2. Comparison of LQR (R=0.01), LQR(R=0.001), and
MPC for ref=0.035 for nominal system.

LQR
(R=0.01)

LQR
(R=0.001) MPC

ISE 0.0101 0.0093 0.0091
ITSE 0.1009 0.0938 0.0928

IAE for
Control Signal 35.9205 66.9958 148.1477

ISE for
Control Signal 267.4477 914.3725 3093.1843

signal is limited with larger R. Also, LQR (R=0.001) has bet-
ter performance considering the transient responses in experi-
ments. Although LQR (R=0.001) has similar responses with
MPC and in some cases even better responses from MPC, the
LQR algorithm creates a static system by placing the system
poles at optimal positions, thus once it is designed and set, the
system remains same. MPC has better performance since it has
a dynamic behavior which can solve problems such as sudden
disturbances. However, it causes higher cost due to the control
signal.

5.2. Parameter Variations

The plant is changed by adding an extra mass which is 1.2
kg to the upper plate, and results are observed for all controllers.
When the modified plant by adding extra weights is examined,
it is observed that both of the LQR controllers provide better
responses than MPC which can be seen from Figure 13 and Fig-
ure 14. The system with LQR (R=0.001) gives a better response
than the system with LQR (R=0.01) since smaller R parameter
enables LQR to generate a larger control signal. Moreover, the
system response with MPC is the worst among three controllers
because MPC algorithm requires an accurate plant to predict fu-
ture horizons and generate an appropriate control signal for that
plant. When the plant model is irrelevant from the actual plant,
MPC cannot control the system as it can be observed from Fig-
ure 13. However, when the plant model is changed with a mass
of 0.3 kg instead of 1.2 kg, the control becomes visibly better
as can be seen in Figure 14.

Figure 13. Real-time response for LQR with changed plant.

Figure 14. Real-time response for MPC with changed plant.

5.3. Varying Load Profile

To examine the disturbance rejection of the system with
each controller, disturbance is applied to the upper plate. To ob-
tain more accurate results, an experiment is designed. An object
which weighs 0.2 kg is chosen as a disturbance mass, and the
active suspension experiment set is adjusted to start 7 cm above
from ground at each trial. After that, a step-like road distur-
bance is applied to the system and waited until the system set-
tles. After approximately three seconds from settling, the object
is released from 3 cm above from upper plate. Then, the object
is removed from the upper plate after approximately 4 seconds
later. After the disturbance comparison experiment set up, the
system responses for LQR (R=0.01), LQR (R=0.001), and MPC
are analysed and the data which is used for comparison is gath-
ered from MATLAB. The systems are compared with the ability
to preserve their first settling position. Therefore, integral ab-
solute error (IAE) and ISE values are calculated by taking the
difference between the system response and settling value after
the system settles. For all three controllers, upper plate position
is changed through the ground when the disturbance object is
released, and after removing the object from upper plate, up-
per plate’s position is changed and it is different from the initial
settling position. It is observed that when MPC is used, the up-
per plate position has not changed as much as the system with
LQR controllers considering initial settling position. As it can
be seen from the Table 3 and Figure 16, MPC has a visibly bet-
ter performance for both IAE and ISE with a higher cost of the
control signal.

Figure 15. Real-time disturbance rejection comparison for
three controllers.



In this experiment, the settling time at the beginning is not
considered as an aspect of comparison. Furthermore, the re-
sponses against larger mass disturbances for both square-wave
and step-like road disturbances can be seen from Figure 18 and
Figure 15.

Figure 16. Disturbance experiment control signal comparison
for three controllers.

It can be observed that MPC is more powerful in terms of
keeping the system in the range of its settling positions. In Fig-
ure 12, upper mass has oscillations for MPC. However, upper
mass preserve its position successfully as it can be seen from
Figure 15.

Table 3. Disturbance experiment results.

LQR(R=0.01) LQR(R=0.001) MPC

(IAE) 0.0307 0.0125 0.0041

ISE (ISE) 11.6375 7.8876 4.5463

Abs Con.Sig. 2.6516 9.2277 25.2984

ISE Con.Sig. 7.8794 29.3048 116.2787

Figure 17. Real-time disturbance (heavy) rejection comparison
for three controllers.

In Figure 18, although the upper mass oscillations are vis-
ibly more than LQR controller systems, the upper mass stayed

in the range of open loop response against road disturbances.

Figure 18. Real-time response against disturbance for three
controllers.

6. Conclusion
In conclusion, the active suspension system differs from

other suspension types by having an actuator which enables it
to implement force directly to the system rather than static be-
havior. Control of active suspension system is a disturbance
rejection problem. In this study, the disturbances are generated
as square wave which simulates the speed bumps and pits on
the road surface. After the system’s mathematical model is ex-
amined it is controlled with LQR and MPC respectively.

LQR is selected to control the system since it is an optimal
control method which is more convenient for designing con-
trollers. Two different LQR controllers are designed and they
differ from each other only in terms of R which affects the ag-
gressiveness of control signal. It is observed that both of the
LQR controllers are successful against disturbances in both sim-
ulation and real-time experiments in terms of minimizing the
oscillations.

After that, MPC is used due to its dynamic behavior and
increasing popularity in the industry. When the responses are
observed it is clear that, MPC is one of the successful methods
to control such systems.

Finally, LQR and MPC are compared in terms of perfor-
mance and control expense specifically such as control cost,
total error, responses against the disturbances, and responses
to model changes since LQR and MPC methods are similar to
each other in terms of theoretical background. To obtain more
scientific results, the disturbance comparison was made by set-
ting up an experiment that is based on putting an object on the
upper plate. After that, the experiment has executed on Quanser
active suspension experiment set-up. Considering the results,
model predictive control is found as the best control method in
terms of disturbance rejection, stability around balance point,
and response time against sudden changes of working environ-
ment since it has a dynamic behavior. Linear quadratic regula-
tor is more successful against plant model changes although it
is a static control method. Also, systems with LQR and MPC
has similar responses but LQR has significantly smaller control
expense and requires much less computational power.

Moreover, a number of improvements can be suggested for
the system. For instance, LQR design matrices Q and R can be
calculated using optimizing search methods such as the genetic
algorithm to obtain better results. Also, the plant model is vital



for MPC structure, thus it can be calculated by measuring the
parameters of the system such as weight.
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