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Abstract 
 

Diagnose of autism spectral disorder (ASD) as a mental 
disorder by machine learning algorithms has attracted many 
attentions. Finding biomarkers from the rest state functional 
magnetic resonance imaging (R-fMRI) data is one of the 
common methods used for classifying ASD and normal 
healthy person (HP). This paper presents Eickhoff-Zilles 
(EZ) atlas to evaluate time courses for 20 ASDs and 16 HPs 
in 116 regions of interest (ROIs). To extract the effective 
features for classification, Ripplet Ⅱ transform and higher 
order cumulants are proposed. Then, two sample t-test is 
employed to select the discriminative features for 
classification. After normalizing the selected feature vector, 
the data are classified by support vector machine (SVM). 
The results show that the proposed method achieves 91.67% 
accuracy which outperforms previous works.  

 
1. Introduction 

 
Autism spectral disorder (ASD) is a mental disability which 

causes disturbance in social skills, speech, and verbal 
communications [1].  The signs of ASD appear in the age 
between 2-3 frequently and these signs are prevalent among 
boys rather than girls, four times as large for boys than girls [2]. 
Interviews and behavioral observations are formal methods to 
diagnose ASD [3]. Due to the complexity of ASD symptoms 
and different subtypes of ASD, these methods last longer than 
expected. Brain imaging can be a suitable alternative for these 
conventional methods [4]. 

Rest state functional magnetic resonance imaging (R-fMRI) 
measures the regional interactions in brain while a person does 
not do a special thing. These measures are blood oxygen level 
dependence (BOLD) measurements which help to recognize 
interactions among different parts of brain, and reveal 
how/which different brain regions relate to each other [5]. ASD 
patients are unable to show normal reactions in social 
interactions or normal emotion responses. Thus, R-fMRI can 
help to detect the differences between brain patterns in a person 
who is suffering from ASD and normal healthy person (HP).   
There are several studies on diagnosing of ASD based on the 
information driven from R-fMRI data. In [6], the authors used 
regional homogeneity from fMRI data as features. Important 
features were selected by Chi-square feature selection, and then 
classified by metacognitive radial basis function classifier where 
70-80% accuracy rate was obtained. Whole brain functional 
connectivity in the Slow-5 and Slow-4 frequency bands, 0.1-

0.027 Hz and 0.027-0.073 Hz, respectively, were used as 
features in [7]. Support vector machine (SVM) was employed as 
classifier and the accuracy of 79.17% was reported. The authors 
in [8] got measures of pairwise functional connectivity of multi-
site driven data from 7266 regions of interests (ROIs). Leave-
one-out classifier was used and the obtained classification 
accuracy was 60%. In [9] using pipelines for extracting 
biomarkers from R-fMRI data was proposed. The participant-
specific connectomes were assumed to learn patterns of 
connectivity between ASDs and HPs. The obtained 
classification rate was 67%.  

The authors in [8] and [9] used their own templates to extract 
ROIs. Recently, different fMRI preprocessed data were 
published from the autism brain imaging data exchange 
(ABIDE) which helped to extract ROIs based on atlases. 

fMRI data are four-dimensional (4D). To reduce the 
dimension from 4D to two-dimensional (2D), the average of the 
voxels in each ROI is calculated. To find the ROIs, atlases can 
be used as a template. Eickhoff-Zilles (EZ) is an atlas derived 
from the max-propagation atlas distributed by the SPM anatomy 
toolbox [19]. It represents 116 ROIs from whole brain which are 
used in this paper to extract time courses. Feature extraction is 
the most important step in image processing. The proposed 
feature extraction step contains two parts. First, Ripplet Ⅱ 
transform [10] is applied on data. Then,  the output of Ripplet Ⅱ 
transform is partitioned into smaller non-overlapped parts, and 
cumulants [11] of each part are calculated as final features. 
Two-sample t-test (Ttest2) is used to find discriminative features 
[12]. Selected features are normalized and then classified by 
SVM [13]. The results show 91.67% classification accuracy.  

The rest of the paper is organized as follows. Section 2 
describes fMRI data, structure of the methods for feature 
extraction and feature selection, and classification method. In 
Section 3, the experimental results and the comparison of the 
proposed method with previous works are provided. Section 4 is 
a summary and conclusion of the paper. 

 
2. Materials and Proposed Method 

 
Fig. 1 shows the overall block diagram of the proposed 

method. As observed, at first, R-fMRI data are preprocessed 
with SPM8 [20], and then ROIs are extracted based on EZ atlas. 
The next two steps are feature extracting steps that include 
Ripplet Ⅱ transform and calculating higher order cumulants. 
Next, the effective features are selected by two-sample T-test, 
and then normalized to the range [0 1]. The last step is 
classification. In the following each part is explained in detail.     



 

R-fMRI data Preprocessing with SPM8
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Implementing Ripplet Ⅱ 
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Fig. 1. Block dtiagram of the proposed method. 

 
2.1. R-fMRI Data and Preprocessing  
 

The R-fMRI data used in this paper are aggregated by the 
ABIED, Olin, Institute of living at Hartford Hospital (OLIN) 
[21].  Table 1 contains the details of the OLIN dataset. Due do 
the head motions and incomplete information in the first 
volumes, the first 30 volumes are ignored in this study. 

 
Table 1. Details of the dataset used in this study. 

 

Institute OLIN 

MRI vendor Simens 

TR (msec) 1500 

TE (msec) 27 

Voxel Size (mm) 3.43×3.43×4 

Volumes 210 

No. of ASDs 20 

No. of HPs 16 

 

Before extracting ROIs, data have to be preprocessed. The 
preprocessing step includes: realignment and reslicing, and 
normalization. All preprocessed procedure is performed with 
SPM8 [20]. 

 
 
 

2.2. ROI Extraction 
 

To avoid the high dimensionality of R-fMRI data, extracting 
ROIs from time-series R-fMRI data can be very useful. EZ atlas 
[22] is used in this paper to extract 116 ROIs. Formally, the 
average of each voxel signal in each region is considered as 
time-series data. 
 
2.3. Feature Extraction 
 
     Here we explain the proposed feature extraction method in 
detail. 
 
2.3.1. Ripplet Ⅱ Transform 
 

If 1 2{ ,  ,  ...,  }T
iX x x x  is the fMRI time-series data for 

one ROI, then the matrix F can be defined as 

{ ;  1 i 116}116
iX T   F  for all ROIs. Thus, the data of 

each subject can be considered as an image in which each 
column contains the variations of each ROI during scanning. 
The fourier transform (FT) and wavelet transform (WT) are 
commonly used in image processing. Boundaries cause 
sigularities in image tensity. The disadvantage of FT is that one-
dimensional (1D) singularities destroy the sparsity of FT series 
[14]. While WT overcomes FT constraints, it can not resolve 2D 
singularities along haphazard shaped curves [15]. To overcome 
the FT and WT restrictions, Ripplet Ⅱ transform was introduced 
[10] which is defined based on generalized Radon transform 
(GRT). Ripplet Ⅱ transform contains two main steps. First, GRT 
[23] converts singularities along curves into point singularities 
in generalized Radon (GR) domain. Then, WT is used to resolve 
point singularities in GR. To implement the Ripplet Ⅱ transform, 
the matrix F is converted to ( ,  ) F in polar coordinates and 
the transform is defined as follows: 
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where 0a  denotes scale, b   represents translation, 
d   indicates degree, [0,  2 )   indicates orientation and 

 *
.  is the conjugate operation. (.)ndT  is a Chebyshev 

polynomial of degree nd. More details are found in [10]. 
 

2.3.2. Higher Order Cumulants  
 
Moments are features that have been frequently used. In this 

paper cumulants that are obtained from moments are 
considerded [11]. The matrix R is partioned into k  non-
overlapping parts. The second and forth order cumulants are 
extracted from each part. The second order cumulants 

2 2{  [ ];   0,1}lC c l   and the forth order cumulants 

4 4{  [ ];   0,  1,  2}jC c j   are calculated as follows [11]. 
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where k is the partition number, .  is the absolute sign, r is the 

row vector of each sub-matrix, and E[.] is the expectation 
operator. The final feature vector is revealed as 2 4[ ,  ].C C C  

 
2.4. Feature Selection and Normalization 

 
Two-sample t-test is a statistical indicator that can be used 

for feature selection [12]. This test is applied on two different 
groups and the effectiveness of features between two groups is 
calculated as follows: 

 

2 2

 
 A B

A B

A B

t

n n

 

 






 
(7) 

 

where   is the sample mean,   is the sample standard 
deviation, and n denots the number of samples in each class. 
Features with lower t (t < 0.01) are selected as effective 
features. 

The selected features are normalized before applying to 
SVM. Normalizing not only reduces numerical difficulties 
during claculations, but also prevents attributes in greater 
numeric ranges from dominating those in smaller numeric 
ranges [18]. The features C are normalized to normC in the range 

[0,  1]  as follows: 
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2.5. Classification 
 
SVM is the most commonly used classifier that finds the 

optimal hyperplane with labeled training data which enables 
them to classify new examples [13]. Here, K-fold cross 
validation RBF SVM classifier is used which is available in 
MATLAB. 

 
3. Experimental Results and Discussion 

 
In this section, the procedure of classification of ASDs and 

HPs and the obtained results are presented. 
By extracting time courses from R-fMRI data based on EZ 

atlas, each subject with 180 volumes is represented with matrix 

116 180.F Then, Ripplet Ⅱ transform is applied on each matrix. 

The Ripplet parametres are as follows: The degree (d) of the 
transform is set to 2 and Daubechies 4 as a wavelet function 
which is applied for 4 levels on each sample. Fig. 2 

demonstrates the output of Ripplet Ⅱ transform for two samples. 
The first row is a sample of ASD and the second row is a sample 
of HP. As shown, Fig. 2a and Fig. 2c are the results of 
extracting time courses based on EZ for each subject 116 180( ).F  

Figs 2b and 2d are the Ripplet Ⅱ transform coefficient matrix for 
those samples. The obtained matrix for each sample is 
partitioned into 29×41 non-overlapping sub-matrices. The 
second and fourth order cumulants of each part are calculated. 
Thus, the total number of features for each sample is 
29 41 5  . Discriminative features are determined by two-
sample T-test (t < 0.01). The selected feature vector is 
normalized before classification. Finally, data are classified by 
K-fold cross validation SVM. The Guassian kernel with 2 and 4 
folds is used. The variation of classification rate for different 
number of features is shown in Fig. 3. The highest accuracy for 
2-fold is obtained when the first 9 features with smallest t values 
are selected. The result is 88.89% accuracy. For 4-fold, the best 
result is achieved by selecting the first 10 features with smallest 
t values, and the method yields 91.67% classificatin accuracy. 

 

  

(a) (b) 

  

(c) (d) 

Fig. 2. Samples of fMRI time-series; a) a sample of fMRI time-
series for ASD before Ripplet Ⅱ transform, b) a sample of fMRI 
time-series for ASD after Ripplet Ⅱ transform, c) a sample of fMRI 
time-series for HP before Ripplet Ⅱ transform, and d) a sample of 
fMRI time-series for HP after Ripplet Ⅱ transform. 

 
The authors in [8] and [9] used multi-site data and different 

types of pipelines to figure out time courses. They achieved 60% 
and 67% classification accuracy, respectively. The work in [17] 
explored the activity of salience network among 20 ASDs and 
20 HPs which were classified by independent component 
analysis (ICA) which resulted in 78% accuracy. In [16] the 
authors determined a spatial filter for projecting the covariance 
matrices of BOLD time-series signals. The discriminative 
features were extracted by a spatial feature based detection 
method (SFM). The method reached 77.3% classification 
accuracy. Table 3 compares the performance of different 
methods. It is observed that the proposed method significantly 
outperforms the previous works. 



Table 3. Performance comparison of the proposed method with previous studies.
 

Author Method Accuracy (%) 

Nielsen et al. [8] 
Pairwise functional connectivity measurements from a lattice of 7266 ROIs 

obtained and grouped into multiple bins 
60 

Abraham et al. [9] 
Using different pipelines to extract the most predictive biomarkers and 

finding differences of articipant-specific connectomes patterns 
67 

Subbaraju et al. [16] Spatial feature besed detection method 77.3 
Uddin et al. [17] Salience network activation exploring 78 

Proposed method Ripplet Ⅱ transform and higher order cumulants as features 
2-fold SVM    88.89 
4-fold SVM    91.67 

 

 
Fig. 3. Results of classification for different number of 
features with 2-fold SVM and 4-fold SVM. 

 

 
4. Conclusion 

 

In this work, EZ atlas was used to extract time-seies of 116 
ROIs which reduces the dimension of R-fMRI data. Ripplet Ⅱ 
transform was performed due to its robustness in exploring 
boundary variation in time-series data. Additionally, extracting 
cumulants from Ripplet Ⅱ transform coefficiants improves the 
performance. After selecting effective features by two-sample T-
test, the selected features were normalized and then were 
classified by SVM. With only 10 features the proposed method 
achives 91.67% classification accuracy which shows significant 
improvement in comparison with previous studies.  
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