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Abstract 
 

Inverted pendulum systems have an important place in 
practice for control problems due to their nonlinear 
structures. It is a very difficult task to control the orientation 
and speed of objects and robots which are free in three 
dimensions. These systems constitute the substructure of 
many advanced systems. Conventional actuators may not be 
used in such applications due to various limitations. Under 
these circumstances usage of reaction wheels come into 
prominence. Reaction wheel based systems are used for 
orienting, coordinating and balancing of spacecraft, 
transport systems, and other such systems. In this study, dual 
axis self-balancing reaction wheel based inverted pendulum 
system which is a basis for many complex systems has been 
designed, manufactured and controlled. 
 

1. Introduction 
 

Many studies have been done about inverted pendulum and 
reaction wheel based inverted pendulum systems. In [1], a study 
about linear control of reaction wheeled inverted pendulum has 
been done. In [2], a study about nonlinear control of inverted 
pendulum in two axes has been done. A study of fuzzy logic based 
control has been done in [3]. Spong et al. have done modelling 
and control studies on reaction wheel based systems in [4]. 

Reaction wheels can apply torque to the body they are attached 
by using the inertia of a rotating wheel and by this means they can 
change the orientation of the body. Inverted pendulum systems 
have a very rich background [5] and they are frequently used for 
testing, implementing and comparing new control concepts and 
theories [6]. The most significant difference between the 
proposed system and existing classical inverted pendulum 
systems is the use of reaction wheels in order to achieve balance. 

In general, reaction wheels are used to control the orientation 
of space crafts in space which has no gravitation and no friction 
without using rocket fuel or any other actuator. The basic working 
principle is based on the Newton’s third law: “For every action, 
there is an equal and opposite reaction.” 

Based on these, a reaction wheel attached to any motor creates 
a momentum which is equal and opposite to the angular 
momentum that has been generated because of the law of 
conservation of momentum depending on its angular velocity. 
Reaction wheels can only generate momentum around their 
center of mass. Therefore, they cannot generate translational 
motion. 

Just like any other system, the angular momentum will be 
conserved if no external torque is applied. Therefore, by applying 
counter torques to falling direction with reaction wheels, the 
system can be balanced. The motors that are controlled for this 
purpose have balanced the pendulum around the point that the 
pendulum is touching the ground. 

 
2. System Modeling 

 
The two axes of the system are considered to be independent 

of each other and the motion equations are derived for a single 
axis. For this purpose, system considered as in Figure 1 and 
modeled by Lagrange method. 

 

 
Fig. 1. Single axis inverted pendulum with reaction 

wheel model 

• 𝑂" center of gravity of pendulum 
• 𝑂# center of gravity of reaction wheel 
• 𝐿" distance between origin(O) and the center of gravity 

of pendulum 
• 𝐿# distance between origin(O) and the center of gravity 

of reaction wheel 
• 𝜃 angle between pendulum and vertical axis 
• 𝜙 angle of reaction wheel 

 
General Lagrange expression is given in (1). 
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𝜕ℒ
𝜕𝑞,

− 	
𝜕ℒ
𝜕𝑞,
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Here ℒ  is the Lagrance operator, 𝑞,  are generalized 
coordinates (for our system 𝜃 and 𝜙), 𝜏, are the total torques of 
these coordinates. Lagrange operator is defined as the difference 
between kinetic and potential energy as it is shown in (2). 

 
 ℒ = 𝐾𝐸 − 𝑃𝐸 (2) 
   
• 𝐾𝐸 ∶ Total kinetic energy of the system 
• 𝑃𝐸 : Total potential energy of the system 

 
Kinetic and potential energy expressions of the system are 

given in Equation (3) and (4). 
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(3) 

	 𝑃𝐸 = 	 𝑚"𝐿" +	𝑚#𝐿# 𝑔𝑐𝑜𝑠𝜃	 (4)	
 
• 𝑚" mass of pendulum 
• 𝑚# mass of reaction wheel 
• 𝐼"  moment of inertia of pendulum around center of 

gravity 
• 𝐼# moment of inertia of reaction wheel around its center 

of gravity 
We obtain the Lagrange operator as in (5), after writing the 

Equations (3) and (4) into (2). 
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(5) 

 
For both coordinates, we obtain the (6) and (7) after writing 

Equation (5) in Equation (1). 
 

 𝑚"𝐿"# +	𝑚#𝐿## + 	𝐼" + 	𝐼# 𝜃 +	𝐼#𝜙
− 𝑚"𝐿" +	𝑚#𝐿# 𝑔𝑠𝑖𝑛𝜃 = 0 (6) 

   
	 𝐼# 𝜃 −	𝜙 = 	𝑇B	 (7) 

 
Here 𝑇B is the reaction wheel drive torque without considering 

friction and electrical dynamics of DC motor. Equation (6) can be 
rewritten as in (8) after linearization. Since 𝑠𝑖𝑛	(𝜃) is the only 
non-linear element in the equations, Equation (7) is not changed. 

 

 𝑚"𝐿"# +	𝑚#𝐿## + 	𝐼" + 	𝐼# 𝜃 +	𝐼#𝜙
− 𝑚"𝐿" +	𝑚#𝐿# 𝑔𝜃 = 0 (8) 

  
In the next step, to control the reaction wheel at the desired 

speed the mathematical model of the motor’s physical behavior 
was included in the system with Equations (9), (10) and (11). 

 

 𝑉 = 	𝐿F
𝑑𝑖
𝑑𝑡
+	𝑅F𝑖 +	𝐾H𝜔F (9) 

   
	 𝑇F = 𝐾J𝑖	 (10) 
	 𝑇B = 𝑁L𝑇F	 (11) 

 
Variables in these equations defined as the following: 𝑉 motor 

voltage, 𝐾H  motor back electro-magnetic force, 𝜔F  angular 

velocity of the motor, 𝐿F armature coil inductance, 𝑅F armature 
coil resistance, 𝑖 armature current, 𝑇F motor generated torque, 𝐾J 
motor torque constant and 𝑁L gear ratio. Since the inductance of 
the motor relatively less than its resistance (𝐿F ≪ 𝑅F ), we 
neglect the inductance term in the equation. Using the 
relationship between the motor and the reaction wheel, we can 
calculate the required motor voltage in terms of the reaction wheel 
angular velocity as in (12): 

 

 𝑇B = 𝑁L𝐾J
𝑉 − 𝐾H𝑁L𝜙

𝑅F
 (12) 

 
After all these steps state-space representation of the system 

obtained as in Equation (13) and (14). 
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 𝑦 = 1 0 0 0

𝜃
𝜃
𝜙
𝜙

	 (14) 

 
As it can be noticed, to write the state-state representation in a 

more compact form following variables were defined. 
 

 𝑎 = 𝑚"𝐿"# + 𝑚#𝐿## + 𝐼"	, 𝑏 = 𝑚"𝐿" + 𝑚#𝐿# 𝑔, 
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3. Mechanical Design 

 
The 3D design has been done in computer environment using 

SolidWorks. During development of the design, existing designs 
in the literature have been used [2], because there were no specific 
physical requirements. However, minor changes in design of 
reaction wheels have been done in order to minimize weight 
without compromising the inertia. Manufacturability of the parts 
have been considered. The design consists of 2 reaction wheels, 
2 assembly apparatuses that are used to attach the wheels to 
motors, 2 motor holders, a rod that forms the main body of the 
pendulum, a main holder that ties motor holders to the rod, a tip 
that is attached to bottom of the rod to touch the ground and an 
IMU holder at the top of the rod. 

The design of the reaction wheel is given in Figure 2 which is 
an important part of the system. They are manufactured from 
aluminum, have a diameter of 70 mm and weight 42 grams. 



 
Fig. 2. Reaction wheel CAD drawing 

An aluminum motor holder given in Figure 3 is designed in 
order to attach motors to the pendulum body. The rod has been 
cut from an aluminum tube in a way that the rod has a height of 
30 cm, has an outer diameter of 9 mm and has an inner diameter 
of 7 mm. All of other aluminum parts are manufactured with the 
use of CNC milling machine. 

Completed design and CAD model of the overall system is 
given in Figure 4 and a picture of the manufactured system is 
given in Figure 5.  
 
 

 
Fig. 3. Motor holder CAD drawing 

 

 
Fig. 4. System CAD drawing 

 

 
Fig. 5. Manufactured system 

4. Electronic Structure of System and Communication 
 
The system includes: two 12V gearless DC motor, motor 

driver which amplifies the appropriate control signals for the 
motors and inertial measurement unit (IMU) that measures the 
necessary angle values for the system. The control algorithms of 
the system are coded by using Arduino interface and embedded 
to Arduino Mega board. To communicate the Arduino board with 
the computer, a user interface that has a capable of serial 
communication is designed via Visual Studio program with C# 
language as shown in Figure 6. 

 

 
Fig. 6. User interface 

5. Control and Simulations 
 

For the control of the mathematical model obtained system, 
pole placement technique is used. The applicable methods in 
classical PID method are more restricted than the pole placement 
technique due to not being fed back of all system states. In pole 
placement technique, closed loop poles of the system can be 
shifted systematically to desired locations with the state feedback 
gain matrix.  

The general scheme of the closed loop state feedback system 
with pole placement technique is as shown in Figure 7. 

 



 
Fig. 7. General scheme of state feedback control system 

The state space representations of the continuous time systems 
are defined as in (15) and (16) where x, y and u represent state 
matrix, output matrix and input respectively; 

 
 𝒙 = 𝐴𝒙 + 𝐵𝒖 (15) 
   
 𝑦 = 𝐶𝒙 + 𝐷𝒖 (16) 

 
For our designed system, the A, B, C and D matrices are as 

shown in (17) and (18);  
 

𝐴 =

0 1 0 0
49.7 0 0 0.0026
0 0 0 1

−49.7 0 0 0.8165

	𝐵 =

0
−0.2337

0
72.71

 

 
(17) 

  

𝐶 =

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

	𝐷 =

0
0
0
0

 

 
(18) 

 
Here, control rule is defined as with the state feedback gain 

matrix u= -Kx and then the state equation in (15) is written as in 
(19); 
 

 𝒙 = 𝐴𝒙 − 𝐵𝐾𝒙 = 𝐴 − 𝐵𝐾 𝒙  (19) 
 

Using (19) and desired pole locations, the state feedback gain 
matrix is calculated by (20). 

 
 𝑠𝐼 − 𝐴 + 𝐵𝐾 = 𝑠 − 𝑠" 𝑠 − 𝑠# …	(𝑠 − 𝑠b)  (20) 

 
s1, s2, …, sn represent the desired pole locations of the system. 

These values are tried to be optimized on simulation and real time 
system by trial and error. The closed loop system poles are 
selected as s1= -4, s2= -3, s3,4= -1.2±0.25j and with these values, 
the K matrix is found as in (21). 

 
 𝐾H = −438.7 −58.04 −0.005 −0.046  (21) 

 
• Ke: The state feedback gain matrix obtained according to 

Lagrange method based mathematical model 
 
The system is simulated with calculated Ke matrix with 0.01 

radian initial system start condition as in Figure 8. It is observed 
that the system can balance itself successfully. 

 

 
Fig. 8. System simulation with Ke via pole placement 

6. Experiments 
 

Derived mathematical model was first simulated by the pole 
placement method and then the obtained parameters were tested 
on the real system. 

Figure 9 shows the pitch and roll angles when 𝐾H applied on 
the system and Figure 10 shows the absolute error of these angles. 
Equation (22) is the formula that is used to calculate the absolute 
error. 

 

 𝐸𝑟𝑟𝑜𝑟dbLeH = 	
𝑎𝑛𝑔𝑙𝑒, − 	𝑎𝑛𝑔𝑙𝑒dhHBdLH

𝑛

b

,i"

 (22) 

 
n represents number of data samples that we collected while 

system is working. 

 
Fig. 9. Pitch and roll angle of pendulum 

 

 
Fig. 10.  Pitch and roll angle error of pendulum 



Since the center of gravity is not on the pendulum, pitch and 
roll angles do not converge to zero but instead softly oscillate 
around a constant value. 

As it can be seen from Figure 10, error values increase and 
decrease from time to time but never constantly change in same 
direction. It is also possible to understand from this that the 
system can successfully balance itself. In recent experiments, 
average error values calculated as 0.22 degree for pitch angle and 
0.17 degree for roll angle. A picture of the working system is 
shown in Figure 11 as an exemplary. 

 

 
Fig. 11. Exemplary picture of balanced reaction wheel 

based inverted pendulum 

7. Conclusions 
 

In this study, reaction wheel based dual-axis inverted 
pendulum system has been successfully implemented. At first, 
system modeled by using Lagrange method. After that, some 
approximations were made with the help of simulations to 
determine the system’s criteria and continue with the material 
supply and production stage. The pole placement method has 
been chosen as the control strategy of the system. In future 
studies, we are planning to apply different control methods on the 
system and compare their results. 
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