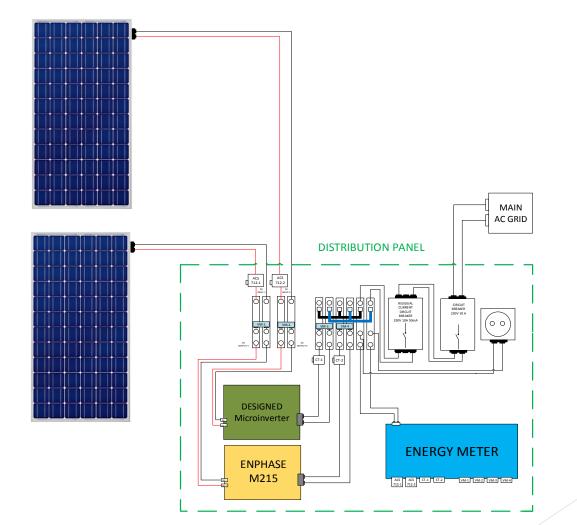


#### DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

#### A Proposed Micro inverter Performance Test Set-up under Real-Time Operation

Gürkan GÖK

Advisor: Prof. Dr. Uğur BAYSAL




## SUMMARY

- 1. Test-Setup and Reference System
  - 1.1. Electrification of Test-Setup
  - 1.2. Decision of Reference Micro Inverter
  - 1.3 Installed Base
- 2. Why we need custom design Power Meter?
- 3. Power Meter Design
  - 3.1. Modules of Power Meter
  - 3.2. AC Voltage and Current Measurement
  - 3.3. DC Voltage and Current Measurement
  - 3.4. Calibration of Power Meter
- 4. Comprasion of Enphase Micro inverter Real-Time Results
- 5. Reference Measurement Comprasions
- 6. Conclusion
- 7. References



Test-Setup and Reference System
2.1 Electrification of Test-Setup



### 2.2. Decision of Reference Micro Inverter

- High Efficiency Performance
- ▶ Reasonable Price,
- ▶ If possible, The Reactive Power Support to the Grid

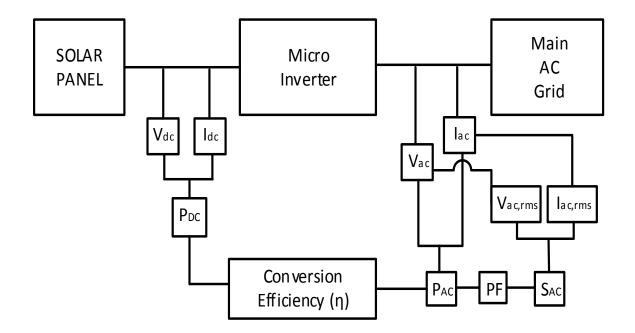
| INPUT DATA (DC)                                      | M215-60-2LL-S22-IG / S23-IG / S24-IG |                                   |
|------------------------------------------------------|--------------------------------------|-----------------------------------|
| Recommended input power (STC)                        | 190 - 270 W                          |                                   |
| Maximum input DC voltage                             | 48 V                                 |                                   |
| Peak power tracking voltage                          | 27 V - 39 V                          |                                   |
| Operating range                                      | 16 V - 48 V                          |                                   |
| Min/Max start voltage                                | 22 V / 48 V                          |                                   |
| Max DC short circuit current                         | 15 A                                 |                                   |
| Max input current                                    | 10 A                                 |                                   |
| OUTPUT DATA (AC)                                     | @208 VAC                             | @240 VAC                          |
| Peak output power                                    | 225 W                                | 225 W                             |
| Rated (continuous) output power                      | 215 W                                | 215 W                             |
| Nominal output current                               | 1.1 A (A rms at nominal duration)    | 0.9 A (A rms at nominal duration) |
| Nominal voltage/range                                | 208 V / 183-229 V                    | 240 V / 211-264 V                 |
| Nominal frequency/range                              | 60.0 / 57-61 Hz                      | 60.0 / 57-61 Hz                   |
| Extended frequency range*                            | 57-62.5 Hz                           | 57-62.5 Hz                        |
| Power factor                                         | >0.95                                | >0.95                             |
| Maximum units per 20 A branch circuit                | 25 (three phase)                     | 17 (single phase)                 |
| Maximum output fault current                         | 850 mA rms for 6 cycles              | 850 mA rms for 6 cycles           |
| EFFICIENCY                                           |                                      |                                   |
| CEC weighted efficiency, 240 VAC                     | 96.5%                                |                                   |
| CEC weighted efficiency, 208 VAC                     | 96.5%                                |                                   |
| Peak inverter efficiency                             | 96.5%                                |                                   |
| Static MPPT efficiency (weighted, reference EN50530) | 99.4 %                               |                                   |
| Night time power consumption                         | 65 mW max                            |                                   |



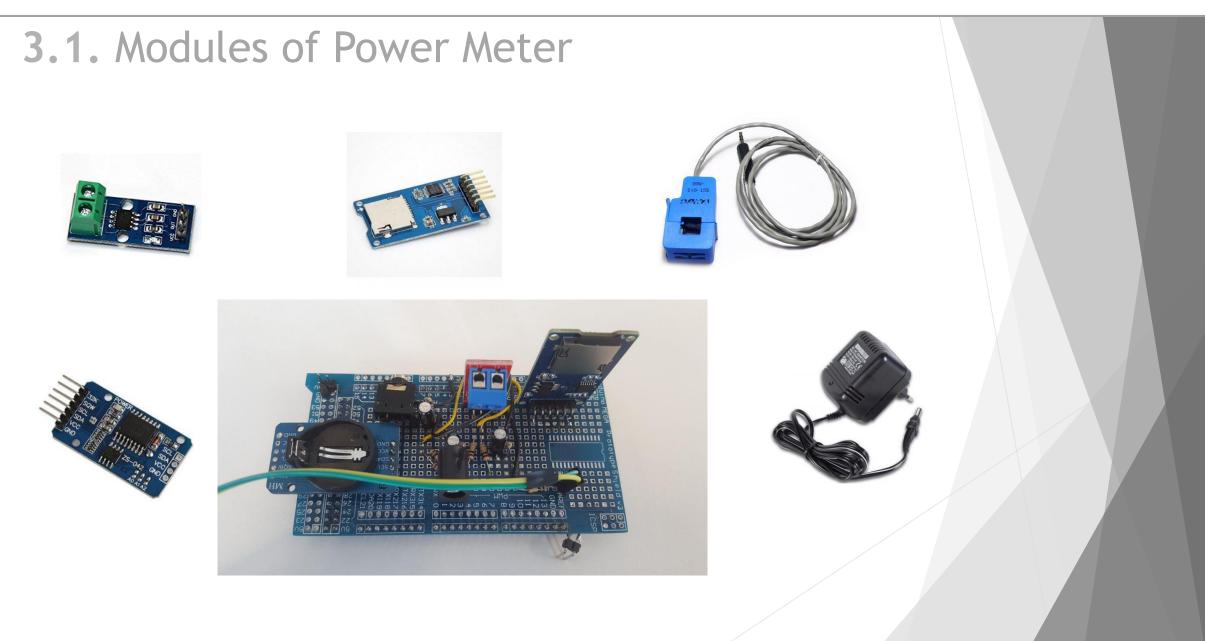
#### 2.3 Installed Base

- Inclination of Solar Panel 32°
- Solar Panel Power: 230 Watt




#### 2. Why do we need a custom design power meter?

- ► To observe Overall System Efficiency
- DC Side Power Measurement
- AC Side Power Measurement
- Power Factor Calculation
- Reactive Power Observation
- Logging the Information
- Real Time Observation ability
- Two different System Tracking Instanteneously




## 3. Power Meter Design

#### ► Flow Chart of Power Meter









#### **3.2.** AC Voltage and Current Measurement

- AC Voltage Measurement: 12 V AC-AC Transformer 15VA (Tolerance: 1%)
- AC Current Measurement: Split-Core Transformer 30A/1V (Tolerance: 3%)
- RMS Current and RMS Voltage

$$U_{rms} = \sqrt{\frac{\sum_{n=0}^{N-1} u^{2}(n)}{N}} \qquad I_{rms} = \sqrt{\frac{\sum_{n=0}^{N-1} i^{2}(n)}{N}}$$

Instantaneous Power, Apparant Power and Power Factor Calculations



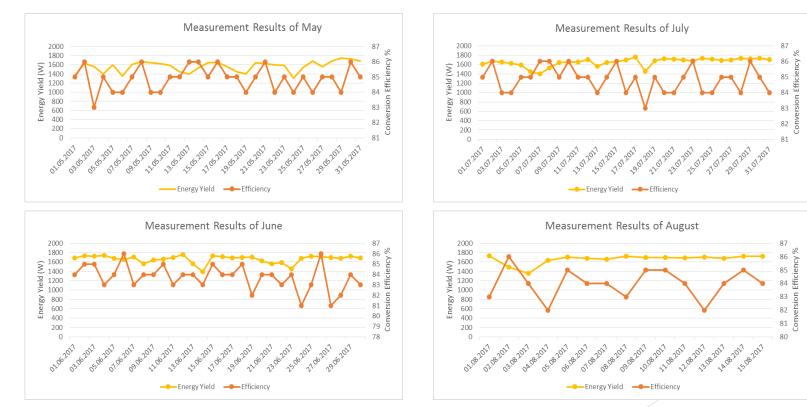
#### **3.3.** DC Voltage and Current Measurement

- DC Voltage Measurement: Resistive(Axial-lead) Voltage Divider (Tolerance: 5%)
- DC Current Measurement: ACS 712 Current Sensing Module (Tolerance: 0.1%)



#### **3.4.** Calibration of Power Meter

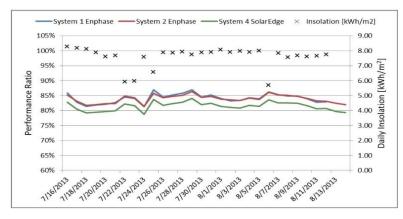
Challenges:


- Low Power Measurement
- Low level sensitive Equipment

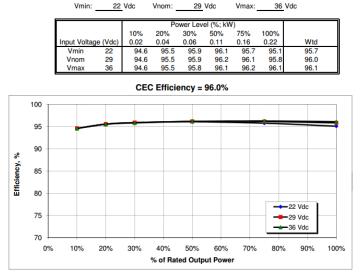
#### Solution:

- Different Calibration Values for Different Power Ranges
- ► 1.15% power measurement sensitivity achivement
- Calibration Devices:
  - ► Fluke 43B Single Phase Power Analyzer
  - Rigol DS 1054Z Osciloscope
  - ▶ UNI-T 203 Digital Clamp Multimeter

# **4.** Comprasion of Enphase Micro inverter Real-Time Results


- Performance test result of Enphase M215
  - MPPT Performance
  - Real-Time Environmental Conditions(Temperature, Moisture)






#### 5. Reference Measurement Comprasions

PVEL Performance test result of Enphase M215 and SolarEdge



Performance test result of Enphase M215 based on CEC





### 6. Conclusion

- Measurement technique for a micro inverter with reactive power support to the grid
- ▶ The compliance of testing a gird-tied micro inverter has been shown.
- Characteristic of a micro inverter under real conditions has been emphasized by comparing the performance results with reference reports.
- Moreover, an energy meter design for low power density devices is presented.
- The critical software calibration of a power meter with low level sensitive equipment is described.



#### 7. References

[1] (2004). [Online].

Available: http://www.erec.org/media/publications/2040-scenario.html

[2] M. Donovan, J. Forrest, and N. Jacobson, "Engineering Report Energy Yield Evaluation at PVUSA Enphase and SolarEdge Side-by-Side," PV Evaluation Labs, Sep. 2013.

[3] S. Jiang, D. Cao, Y. Li, and F. Z. Peng, "Grid-connected boost-half-bridge photovoltaic micro inverter system using repetitive current control and maximum power point tracking," IEEE Trans. Power Electron., vol. 27, no. 11, pp. 4711-4722, Nov. 2012.

[4] Z. Liang, R. Guo, J. Li, and A. Q. Huang, "A high-efficiency PV module integrated DC/DC converter for PV energy harvest in FREEDM system," *IEEE Trans. Power Electron.*, vol. 26, no. 3, pp. 897-909, Mar. 2011.

[5] C. Prapanavarat, M. Barnes, and N. Jenkins, "Investigation of the performance of a photovoltaic AC module," *IEE Proc. Gener., Trans. Distrib.*, vol. 149, no. 4, pp. 472-478, Jul. 2002.

[6] T. Shimizu and S. Suzuki, "Control of a high efficiency PV inverter with power decoupling function," in *Proc. IEEE Int. Conf. Power Electron. ECCE Asia*, 2011, pp. 1533-1539.

[7] (2017). [Online]. Available:

http://www.enphase.com/sites/default/files/M215\_DS\_EN\_60Hz.pdf

[8] (2017). [Online].

Available:<u>http://www.plurawatt.com/files/Modeller/ing/Plurawatt\_AC\_Panel\_EN.pdf</u>



## THANK YOU!