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Abstract
In this paper, we propose a template-based multimedia pro-
cessor array and its design framework. The configurable
processor array is designed for low-cost, low-power im-
age/video processing applications. Each processor in the
array is template-based and implemented by considering
the nature and specifications of image/video processing do-
main. The framework can set the size of the network and
the parameters of the building blocks of each processor.
Hence, the generated architecture occupies only the neces-
sary amount of logic. To show the scalability and the perfor-
mance of the design, different instances of the architecture
implementing four test applications are generated. We have
obtained better or comparable results in terms of energy
consumption, throughput and area occupation compared to
that of the similar architectures in literature.

1. Introduction
In today’s technology, we encounter various processor

chips that provide multimedia functionalities for different ap-
plication domains such as, hand-held devices, smart watches,
industrial applications. Since the specifications of each domain
are different, it is hard to propose a generic processor for ev-
ery domain. Architectures that can be customized for different
needs are proposed as a solution to this problem [1]. To meet
the application requirements on these architectures, number and
behaviour of the processing elements, and size of the memory
units are left configurable. In this paper, we propose a Cus-
tomizable Embedded Processor Array for Multimedia Applica-
tions (CPAMA). The contribution of the proposed architecture
is that in each development cycle of CPAMA, the nature of im-
age/video processing domain is considered.

To make the differences clear between the proposed archi-
tecture and the existing architectures, we categorized the studies
in literature into three groups. First group is Coarse Grain Re-
configurable Arrays (CGRA), with which the proposed archi-
tecture has a similarity in design approach. Second group cov-
ers the architectures that are tailored for a specific image/video
application. Third group comprises the architectures that are
dependent on or targeting a specific device.

The difference between the proposed architecture and the
CGRAs [1, 2, 3, 4] can be pointed out in three items. First,
they are composed of configurable ALUs. Second, they pass
data among ALUs through multi-port register files. Instead,
CPAMA is composed of fully configurable processors. More-
over, data communication is handled through routers and FIFO
instead of register files. Third, the problem defined in [2] is a
loop expansion problem. However, our proposed architecture is

defined using the concepts in image/video processing domain,
e.g. neighborhood, number of frames. The details about these
concepts are covered in Sec. 2.

A considerable part of the studies we reviewed are in the
second group. These studies could be regarded as configurable
application specific processors. In these architectures, the tar-
get application may be filtering [5, 6], video encoding [7, 8],
or a specific image processing algorithm [9]. As opposed to
the mentioned application specific processors, in CPAMA, the
target application is not a specific one. One can easily map an
image/video processing algorithm onto the proposed architec-
ture if the result pixel at a specific coordinate is computed by
the input pixel of the same coordinate or by the pixels in the
neighborhood of that same coordinate.

The third category includes the studies that are depen-
dent on or targeting a specific type of device. Runtime Adap-
tive Multi-Processor System-on-a-Chip (RAMPSoC) architec-
ture [10] exploits partial reconfigurability feature of the FPGAs.
This feature is not supported by all FPGA vendors. Therefore,
RAMPSoC can be regarded as a multi-processor system that
can be ported to partially reconfigurable FPGAs. Another ar-
chitecture called SHARF [11] targets FPGAs as well, but it is
not necessarily dependent on them. However, the processors of
the architecture are tightly coupled to the controller unit, which
may be a bottleneck when the number of the processors gets
larger. The proposed architecture CPAMA is not dependent on
a specific device or a design software. Since it is purely written
in VHDL, it can be implemented on an FPGA or as an ASIC.

The paper is organized as follows: In Sec. 2, basic concepts
that we used in designing CPAMA are covered. Sec. 3 details
the design of the proposed architecture. In Sec. 4, a tool-chain
for CPAMA is presented. Results of four different test appli-
cations are presented and compared to the existing similar ar-
chitectures in literature in Sec. 5. Final section concludes the
paper and we make our remarks about the study.

2. Basic Concepts in CPAMA
CPAMA is designed as a template-based configurable ar-

chitecture. Therefore, CPAMA has both fixed and configurable
parts. Some parameters are defined as configurable or fixed, is
to support as many applications as possible.

In CPAMA, an image/frame is processed block by block.
The size of the block is equal to the size of the processor array
in CPAMA. Fig. 1 presents a sample image. Each small square
represents a pixel. The blue squares represent the pixels in
a block of an image. The pink squares surrounding the blue
ones represent the neighboring pixels. In Fig. 1, r represents
the neighborhood depth. Unless otherwise stated, r represents



the neigborhood depth throughout the text. For the top left
block, r is selected 1; and for the lower block, r is selected 2.
A neighboring pixel can be a real pixel as well as a non-real
pixel. When a pixel is on the boundaries of the image and
r > 0, the result pixel has to be computed using the values
that do not exist. A fixed value or the value of the nearest
pixel can be selected in these circumstances, depending on the
image processing algorithm. In CPAMA, we have designed
the communication network and the processors to support
neighboring pixels. In literature [12, 13], despite some minor
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Figure 1. Assumed image and primitive definitions of image
processing.

differences, image processing algorithms are categorized into
three groups:

1. Point: The output value at a specific coordinate is de-
pendent only on the input value at that same coordinate.

2. Local: The output value at a specific coordinate is de-
pendent on the input values in the neighborhood of that
same coordinate.

3. Global: The output value at a specific coordinate is de-
pendent on all the values in the input image.

In this study, although we focus on the first two groups, the
third group of applications can be achieved on our architecture
as well. Note that, the above classification is given for still im-
age processing. However on CPAMA, image and video pro-
cessing algorithms with more than one input image can be im-
plemented. We simply mention this classification to state what
kind of algorithms we focus on, regardless the number of im-
ages, or whether the images/frames are received continuously.

3. Basic Blocks Of CPAMA
CPAMA is designed considering hardware and software co-

design approach. In the proposed architecture, host processor is
responsible for global commands, and the hardware part, i.e.
processor array, is responsible for processing the data.

CPAMA is built on a grid network-on-a-chip (NoC). As
shown in Fig. 2, each node consists of a processor and a router.
Data communication in the network can be done in two ways:
1) data can be sent through FIFOs of the processors in vertical
direction, 2) data can be sent from a processor to the nearest

Figure 2. NoC communication and basic blocks of hardware.

processors through routers. Global commands are not drawn
for the sake of simplicity.

3.1. Processor

Each processor in the array has a template-based structure.
As opposed to a classical processor e.g., MIPS, the proposed
processor has a memory for storing constants and does not have
a data memory. As shown in Fig. 3; the size of each block,
widths of wires and registers are all configurable and repre-
sented by a letter, e.g., W, R, Z. This way the sub-blocks can
be designed on a need-to-have basis.
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Figure 3. Main blocks of the processor.

In Fig. 3, signals colored with blue represent the internal
control signals. PC represents the program counter, and it is
calculated using GCtrl and PCSrc signals. GCtrl is delivered by
the host processor and acts as a function call. PCSrc is a con-
trol signal. In Adress Calculation sub-block, the next value of
the program counter is determined. Instruction Memory stores
the instructions. According to the user program, each processor
might have a different instruction memory. An instruction is
composed of register addresses, opcode, constant memory ad-



dress, etc. Therefore, the size of the instruction (K) depends on
the size of the mentioned signals. Each different constant value
in the user program is given an address and stored in the Con-
stant Memory. This feature enables using different precisions
for constants. Typically, we have selected the same precision
(W) for constants and the registers. The register file is built
supporting the neighboring values of a block. The FifoIn input
receives the incoming pixels from the above processor, and the
FifoOut signal sends the pixels to the below processor. PortIn
and PortOut receives and sends data from and to the router, re-
spectively. Depending on the location of the processor in the
array and the neighborhood depth, size of the FIFO registers
can vary. For instance; for r = 1, if the number of the frames
is 1 and if the processor is located on the top left most node, the
number of FIFO registers will be 4. For the same case, the FIFO
registers of the processor located in the middle of the array will
be 1. Number of the registers, which are used for temporary
storage, is determined by the user program. Hence, the size of
the register file is determined by the sum of FIFO registers and
the registers that are used for temporary storage. The ALU is
the arithmetic logic unit which executes the operations. The
opcode width (Z) depends on the number of the different in-
structions that are used in the user program. Besides, the ALU
instantiates only the used instructions. Therefore, it occupies
only the necessary amount of logic. ACC is the accumulator
which stores the output of the ALU.

3.2. Router

As shown in Fig. 4, a router consists of a multiplexer and
a de-multiplexer. A router has North, South, East, West and
processor channels. An incoming packet has an argument num-
ber, the pixel data and the accompanying address. Data and
address pair to be sent to the next node is sent through the de-
multiplexer unit. The multiplexer unit chooses the data accord-
ing to activity and the priority of the channel, and sends to the
processor. The router is designed assuming only one channel
sends a packet to the processor at a time, i.e., only one channel
is active. However, to prevent temporary conflicts, we assign
a priority to each channel. Therefore, in case of a conflict, the
packet which comes from a channel that has higher priority is
delivered to the processor.

Figure 4. a) Inputs and outputs of the router. Each channel
(North, South, etc) has data and address input-output. b) The
relations between inputs and outputs of the router.

4. F-CPAMA: Framework for CPAMA
Design of a CPAMA instance is handled by our automation

tool F-CPAMA. As shown in Fig. 5, we have developed a set
of software codes (Application Program Interfaces, API) and
hardware definition codes for F-CPAMA. This tool can be con-
sidered as a framework designed to accelerate the work of the
user who exploits CPAMA. We also have a Design Space Ex-
ploration Tool (DSET) to search the possible best performance
of the target CPAMA instance for a set of different configura-
tions. The flow of F-CPAMA is repeated automatically by this
tool to search possible best performance by changing configu-
rations, constraints, etc.
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Figure 5. Design flow of a CPAMA instance by using F-
CPAMA.

In Fig. 5, the green files are defined by the user. Red blocks
are the codes or software provided by F-CPAMA. Yellow blocks
are common third-party software. Gray files are hardware or
software related files generated by the framework. Blue files
are the outputs defining the target architecture.

The User Code for the Host Processor is provided by the
user and implements the control of the processor array. Tem-
plate Hardware Design files of CPAMA are provided along with
the framework. The hardware code defining the architecture
is vastly generic. Sizes of modules, wires, registers, etc., de-
pend on the User Code for Processor Array and the User Defi-
nitions. Custom Assembler (F-Assembler) is the main tool that
generates the design files of CPAMA. Parsing the user program
and other defined parameters, F-Assembler generates program
and constant memory files for each processor. In addition, F-
Assembler assigns values to the parameters of the design code.

F-Assembler provides code mapping onto different proces-
sors. Therefore, the user can map different functionality to dif-
ferent processors. F-Assembler also provides instruction level
parallelism. Register related instruction(s) and an ALU instruc-
tion can execute concurrently. F-Assembler generates memory
files related to the user program, the files related to the size of
the network, and the configurations for the processors. These
configurations define the size of the register file and determine
instructions that are to be instantiated. Therefore, each proces-
sor uses the necessary amount of logic for the defined function-
ality. For instance, if ADD instruction is not used in a processor
program, related ADD logic is not instantiated in the data-path.

If the user wants to change between two or more programs
at run-time due to chip area restrictions; at first, he/she has to



have F-Assembler instantiated all the instructions and registers
that are used in those programs in the processor architecture.
Then, changing the instruction and constant memory will re-
sult in changing the program memory. On an FPGA, run-time
programmability of CPAMA can be performed by partially re-
configuring memory blocks. In the ASIC case, the memory con-
tents can be delivered through FIFO and written into the Instruc-
tion and Constant Memory. The architectural features related to
programmability in ASIC case have not been implemented yet.

The API functions are written in C++ language. These
functions are considered to run on the host processor. They are
written in pure C++, and are not dependent on a specific proces-
sor. Functions are responsible for global control. To mimic the
host processor, a SystemC-based testbench environment is de-
signed. HDL design files of CPAMA and API functions written
in C++ are simulated together to verify functional correctness.

5. Case Studies
We implemented four different applications on CPAMA to

show its performance and scalability. The first application is
dot product, which is a core algorithm for many image process-
ing applications. The second one is TIFF2BW [14] application.
The third one is 2D Inverse Discrete Cosine Transform (IDCT)
application. Finally, the fourth one is block-match which is
widely used in video processing.

5.1. Dot Product Application

We have implemented dot product application on a Xilinx
Virtex-5 FPGA (xc5vtx240t). This application fits into the sec-
ond category that is mentioned in Sec. 2, i.e. local. In this
algorithm, to compute a result pixel of a specific coordinate, we
need the pixels of the input image in the neighborhood of that
same coordinate.

We have implemented 86 different configurations to ana-
lyze scalability of CPAMA. Table 1 presents a subset of the im-
plemented configurations for r = 1, 2 cases. In r = 2 case,

Table 1. Performance results of several CPAMA configuration
for dot product application.

#Processor Width Height Period (ns) Area (Slice)
r = 1 r = 2 r = 1 r = 2

16 2 8 6.599 6.626 1771 2466
4 4 6.595 6.768 1496 2191

64
2 32 8.815 8.673 7976 8887
4 16 8.059 9.212 4950 5965
8 8 9.190 8.93 4628 5434

200
10 20 9.755 9.965 20227 21811
4 50 9.290 9.418 19635 22646

100 2 9.874 9.920 27753 31887

we only changed the network configuration not the program
memory to eliminate the area increase because of the program
memory. Since the execution time of synthesis and place &
route tool takes too much time for this analysis, we have used
DSET. To find the best possible timing result for each proces-
sor array configuration, DSET software changes the constraints
adaptively and iterates the flow again. However, we had to limit
the number of iterations due to long execution times. Conse-
quently, we can say that the area and period results that our
software finds are close to the best possible results. As seen in
Table 1, CPAMA is scalable and can be configured in various
sizes.

5.2. TIFF2BW Application

To compare our architecture with ADRES [15], TIFF2BW
algorithm [14] is implemented. ADRES is chosen as a refer-
ence architecture because it is not dependent to a specific device
like RAMPSoC [10], and more importantly the TIFF2BW ap-
plication presented in their study [15] is repeatable. TIFF2BW
application fits into the first group (point) of applications that
are defined in Sec. 2.

For TIFF2BW application, ADRES instance was config-
ured as a 4×4 array. The precision of the arithmetic-logic op-
erations of ADRES was set to 32-bits. The circuit was imple-
mented using 90nm CMOS technology. For power measure-
ment, they have generated the switching activity using a 1520
by 1496 sample picture from [14]. In dynamic power measure-
ment, off-chip memory accesses are not included. The circuit
was simulated at 300MHz.

To make a fair comparison between two architectures, we
have implemented a 4×4 CPAMA instance with the same pre-
cision that ADRES has. We have implemented the design using
a 90nm CMOS library and Cadence tools [16]. To eliminate the
effect of inputs in dynamic power measurement, we used the
same input image.

Table 2 presents performance comparison of ADRES and
CPAMA for TIFF2BW application. CPAMA instance that is
compared is the one with a ”*”. We have added performance
values of two more CPAMA instances into the table to demon-
strate its scalability and to show performance results of different
configurations. As a result, according to our comparison regard-
ing TIFF2BW application, CPAMA consumes 31% less energy,
and provides 32% more throughput than ADRES. Moreover,
when the #processors of CPAMA increased 4X, the throughput
increased almost 4X as well.

Table 2. Comparison of performance values of CPAMA and
ADRES for TIFF2BW application.

architecture frequency throughput energy area
(MHz) (pixel/us) (mJ) (mm2)

ADRES 4x4 300 MHz 303 0.54 NA
CPAMA 4x4* 300 MHz 400 0.37 0.40
CPAMA 4x4 350 MHz 466 0.40 0.42
CPAMA 8x8 333 MHz 1641 0.54 1.45

5.3. IDCT Application

To compare the proposed architecture with another ADRES
study [17], we have implemented IDCT as well. IDCT algo-
rithm can be considered in the third group (global) of applica-
tions that are defined in Sec. 2. Since the method used for IDCT
implementation in ADRES [17] is not stated, we have followed
two different methods for implementing IDCT. In the first im-
plementation, we have used Cheng-Wang [18] method. Using
this method, 2D-IDCT is implemented by applying 1D-IDCT to
each column and row respectively. This method is implemented
on a 4×4 CPAMA. In the second implementation, we have used
usual matrix multiplication. For matrix multiplication, we have
used cross-wired mesh array approach [19]. For the second im-
plementation, CPAMA is configured as a 8×8 array. ASIC im-
plementation is similar with the TIFF2BW application, hence it
is not repeated here. Table 3 presents the comparison between
CPAMA and ADRES instances for IDCT implementation.



Table 3. Comparison of performance values of CPAMA and
ADRES for IDCT application.

architecture frequency throughput energy area technology
(MHz) (block/us) (uJ) (mm2)

CPAMA 4×4 400 0.74 29.6 0.39 90nm LP
ADRES 4×4 312 1.70 19.1 1.08 90nm LP
CPAMA 8×8 303 5.60 21.7 1.41 90nm LP
ADRES 8×8 294 1.65 43.2 NA 90nm LP

5.4. Block-match Application

We have implemented block-match algorithm as a proof-of-
concept for multiple frames. Block-match is used in motion es-
timation. In this application, matching is performed by comput-
ing sum of absolute difference (SAD) of two blocks of images.
One of these blocks is in the reference frame, the other one is
in the current frame. Three different instances of CPAMA, that
implement block-match application, are presented in Table 4.
Network size of CPAMA is also equal to one block size. Word-
length of the processors are set to 16-bits. CPAMA instances
are implemented on a Xilinx Virtex-5 FPGA (xc5vtx240t).

Table 4. CPAMA instances for Block-match application.

architecture frequency throughput area #pixels
(MHz) (block/us) (slice) in a block

CPAMA 4×4 140 6.94 1797 16
CPAMA 8×8 125 3.45 7233 64

CPAMA 16×16 83 1.21 26575 256

In Table 4, CPAMA 4×4 has a bigger number in through-
put, but note that size of the block is smaller than that of
CPAMA 8×8 and CPAMA 16×16 configurations.

6. Conclusion
In this paper, a novel architecture is proposed and four dif-

ferent test applications are implemented on the proposed design.
The results are compared to that of existing studies. Compar-
isons suggest that CPAMA provides competitive or better per-
formance in TIFF2BW and IDCT applications, in terms of area
occupation, energy consumption and throughput.

CPAMA is a highly configurable architecture that can be
used for image/video processing. Especially for the applications
that fit into the first and second group (point, local) that are
defined in Sec. 2, changing the configuration can be done in a
matter of days. Since it is a reusable design, CPAMA improves
design and verification time of low-cost, low-power consumer
electronics that exploit multimedia tasks.
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