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Abstract
In some diseases (sleep apnea, sudden infant death syn-
drome etc.), continuous monitoring of respiration rate of
patient at home during sleep is critically important. Nowa-
days wireless communications signals are widely used in
our homes. In this paper, we propose a contactless respi-
ration monitoring system which uses only ambient wireless
communications signals to estimate the respiration rate of
a person. Laboratory experiments show that the strentgh
of the received radio frequency (RF) signals changes due
to inhaling/exhaling of a person between the propagation
path of the transmitter and the receiver. In this study, a
subspace based MUSIC algorithm is proposed to estimate
the respiration rate of a person using ambient wireless sig-
nals. It is shown in various laboratory experiments, where
real data is collected with software defined radios, the MU-
SIC algorithm can successfully estimate the respiration rate
with minimum error compared to the FFT-based Maximum
Likelihood Estimation (MLE) approach.

1. Introduction
The respiration (breathing) rate is a vital sign used to mon-

itor a person’s illness/medical conditions. Non-normal respira-
tion rate can be a sign of serious diseases. For example, sleep
apnea, sudden infant death syndrome (SIDS) and chronic ob-
structive pulmonary disease (COPD) are some imported ones.
In all these diseases, continuously monitoring respiration rate
can be life saving. Existing respiration rate estimation meth-
ods can be categorized into two groups: contact-based and con-
tactless. In contact-based respiration monitoring, the measur-
ing devices are directly connected to the human body [1]. This
method is preferred in clinical environments and the capnome-
ters are commonly used to measure and display the concen-
tration of carbon dioxide in exhaled air. Patients must wear a
mask or nasal cannula while using the capnometers. Besides,
photoplethysmography (PPG) which makes measurements at
the surface of the skin, is used to detect volumetric changes
in blood. In non-clinical environment, some wearable sensors
based solutions have emerged. For example, microphones are
used to collect and analyze the voices that are due to respiration.
Besides, accelerometers are used to catch chest and abdomen
movements. To monitor respiration rate, pressure sensors based
systems are usually used in the form of a smart sleeping mat.
In all these systems some special sensing modules are required
which limits mobility and comfort of the patients and this is not
suitable for long-term and remote patient monitoring.

Contactless respiration monitoring methods have been de-
veloped to remove these adverse effects on patients. In contrast

to wearable sensors, no measuring device or sensor is connected
to the human body in contactless monitoring. Vision-based
methods utilize cameras to track the movements of one’s chest
to measure the exact respiration rate. But, these methods are
not suitable for working in low-light sleeping environments and
also violate the privacy of users. In recent years, electromag-
netic Radio Frequency (RF) signals are started to be considered
in order to sense the respiration activity. When RF signals are
propagated between the transmitter and receiver, they are af-
fected by chest movements due to respiration over the propaga-
tion path. Under this category, Doppler based, ultra-wideband
radar-based [2, 3] methods are available. These are known as
active radar based methods.
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Figure 1. Contactless respiration monitoring setup.

In this study, passive RF based contactless respiration mon-
itoring system with a subspace based rate estimation algorithm
is proposed. The proposed method uses wireless communica-
tions signals (ambient RF signals) such as phase or frequency
modulated signals with constant signal strength as shown in Fig.
1. It is known that RF signals strength at the receiver is chang-
ing with the movement of objects which are between the prop-
agation path of the transmitter and receiver. We observed in
laboratory that receiver signal strength changes due to inhal-
ing/exhaling of the person which makes it possible to estimate
respiration rate. In this study, MUltiple SIgnal Classification
(MUSIC) [4] algorithm is firstly applied for respiration rate esti-
mation for the proposed system. The results which are obtained
by real measurements are compared with MUSIC and Maxi-
mum Likelihood Estimation (MLE) algorithm [5]. It is shown
with various cases that the proposed method outperforms the
MLE method with a stable and reliable respiration rate estima-
tion results.



2. Related Works
In general, Wi-Fi and radio signals are used for human ac-

tivity detection and monitoring in some studies. In these studies,
different signal parameters such as Received Signal Strength
(RSS), Channel State Information (CSI) are used. RSS and CSI
give some information how an RF signal propagate from the
TX(s) to the RX(s) and reveals the combined effect of, for in-
stance, scattering, fading, and power decay with distance [6].
CSI involves both subcarrier phase and amplitude information.
On the other hand, RSS only gives amplitude information. It
is also possible to collect the complex raw signal samples with
a Software Defined Radio (SDR) platform. In this case, it is
possible to get high resolution/rate over the propagation path.

In this study, SDR platform based system is proposed. The
proposed SDR platform based approach can be applied to any
RF signals, on the other hand, CSI and RSS based approaches
can only be applied to some specific signals (Wi-Fi signals).
Since SDR platform does not have any limitation about fre-
quency selection, bandwidth and transmission mode, the current
system can be applicable to any kind of signals.

In [5], they have utilized RSS measurements taken from
many links in a deployed twenty-device wireless network. In
order to estimate the respiration rate, maximum likelihood es-
timation have been used. They showed that 30 seconds of data
is sufficient to frequency estimation, within 0.07 to 0.42 breaths
per minute (bpm) RMS error. They also showed that the using
directional antennas improves the system performance. In [6],
they proposed a new respiratory monitoring system using off-
the-shelf Wi-Fi devices. They utilized CSI data to overcome
hard conditions like change of sleeping positions, sleep apnea.
They computed the Fast Fourier Transform (FFT) of the am-
plitude of signal segments and the location of the peaks of the
FFT in each segment gave the respiration rate of the breathing
person. In [7], they used RSS measurements of a single COTS
TX-RX pair. They achieved mean absolute error of 0.12 bpm.
They also used maximum likelihood estimation to estimate res-
piration rate. They proposed to hinder the effect of external
motions. Therefore, the Hidden Markov Model (HMM) was
used to identify the motion interference. In [8], they utilized
a radar technique called as Frequency Modulated Continuous
Wave (FMCW) to monitor the respiratory. They proposed a
method that respiration frequency can be accurately measured
by performing a linear regression on the phase of the complex
time-domain signal. They filtered the output of the FFT and
kept only the peak and its two adjacent samples. Then, they
have implemented inverse FFT. The phase of the obtained com-
plex time-domain signal will be linear and its slope gave the
respiratory frequency (rate). In [9], two USRP were used one
for the transmitting and one for the receiving the wireless signal
at 2.4 GHz. They proposed four different algorithms to estimate
the respiration rate, which are zero-crossing, FFT maximum se-
lection, linear predictive coding, least squares harmonic analy-
sis. Then a final algorithm dynamically combines and selects
the results from all four algorithms.

3. Respiration Rate (RR) Estimation
System

3.1. Impact of Moving Objects’ Movements to RF Signals
Propagation

It is observed in the laboratory that the RF signal amplitude
changes due to the inhaling/exhaling of the person which is on

Figure 2. Experimental setup in laboratory.

the propagation path as shown in Fig. 2. The person sitting on
the chair in Fig. 2, holds his breath (after exhalation) between
the 22nd and 35th seconds. Then he continues to breathing un-
til 43rd second. Afterwards, he holds his breath again (after
inhalation) between the 43rd and 55th seconds. Fig. 3 shows
the received baseband signals power level in SDR platform for
the above scenario. The received RF signal’s amplitude level
changes with inhaling/exhaling of the person and this causes a
periodicity on the received signal due to the respiratory move-
ments. Even though the received signal is affected by the am-
bient noise, it preserves its periodic structure. The respiration
monitoring methods estimate the respiration rate taking advan-
tage of periodicity of the received signal.
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Figure 3. The effect of the exhalation, inhalation and breath
holding to the received signal.

3.2. Experimental Setup

In our work, the HP 8647A signal generator is used to gen-
erate a continuous wave signal at 900 MHz as the transmitter.
Ettus USRP B210 software defined radio is configured as a re-
ceiver. USRP (Universal Software Radio Peripheral) is an SDR
platform developed by Ettus Research. The experimental setup
established for the measurements is shown in Fig. 2. A 900
MHz carrier signal with constant amplitude is generated from
the transmitter. The power of transmitted signal is adjusted as



-10 dbm. VERT900 omni-directional vertical antenna with 3
dBi gain is used as an antenna in both transmitter and receiver.

3.3. Measurement Model

Transmission path between the transmitter and receiver is
shown in Fig. 1. It is assumed that the transmitted signal is
a phase or frequency modulated signal with a constant peak
amplitude which is a reasonable assumption for wireless com-
munication signals. In this case, the averaged received signal
strength should be constant during communications. On the
other hand, the respiration of a person on the propagation path
of the signal (as shown in Fig. 1 and Fig. 2) will change the
amplitude level of the received signal which is also observed in
literature [5, 6]. If there is no movement between transmitter
and receiver, the received signal’s averaged amplitude should
be,

r(t) = |m(t)| = μ+ w(t) (1)

where μ is the mean of received signal, w is assumed additive
zero-mean noise signal. If a breathing person exists in the envi-
ronment, the magnitude of the baseband complex signal can be
modelled as follows,

r(t) = μ+ x(t) + w(t) (2)

x(t) = Accos(2πfR
˜
t+ φ) (3)

Ac, fR
˜
, φ are the amplitude, respiration frequency (rate)

and phase, respectively. Since respiration requires a periodic
action in the form of inhaling and exhaling the cosine model in
(3) is suitable to model respiration. Then the respiration rate
estimation is the frequency estimation (fR) of the baseband re-
ceived signal.

4. Respiration Rate (RR) Estimation
In order to make the respiration rate estimation algorithm

properly with real measurements, some pre-processing steps are
required. In this section, the basic pre-processing steps such as
Outlier Removal, DC Removal and Downsampling are briefly
summarized.

4.1. Pre-Processing Steps

4.1.1. Outlier Removal

In some cases, deviations that are not induced by respiratory
movements are observed on the received signal. This deviations
are called as outliers. In Fig. 4, the outliers can be seen that near
8, 10, 38, 46, 55 and 59 sec. If this signal is used as input to the
respiration rate estimation system, the results will be incorrect.
So, the outliers must be eliminated. For this purpose, the well
known Hampel identifier is used [10]. Hampel identifier calcu-
lates the median (μ) and standard deviation (σ) of the samples
in the measurement window. Then, it determines an upper and
lower bound using μ and σ. Upper and lower bounds are set to
μ + 3σ and μ − 3σ, respectively. A new sample which is out
of these bounds is qualified as outlier. The outliers are detected
and removed from the original signal as seen from the Fig. 4.

4.1.2. Downsampling

The received signal is sampled by the USRP at 1200 Hz.
Since the respiration rate is below 1 Hz, high sampling rate
makes difficult to distinguish the respiration signal in the fre-
quency spectrum. Moreover, high sampling rate increases the
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Figure 4. (Top) The original signal with outliers. (Bottom) The
signal whose outliers are removed using Hampel identifier.

computational cost. Due to these reasons, the received signal
is downsampled without distorting its waveform and periodic
form. After downsampling, the sampling rate of the received
signal is reduced to 1 Hz.

4.1.3. DC Removal

When the spectral analysis is carried out, it is seen that the
first component of the signal in frequency domain contains high
energy. This DC component that is the average value of the sig-
nal in frequency domain suppresses the other frequency com-
ponents. Besides, DC component does not contain any infor-
mation about the respiration. For removing the DC component
from signal, the average value is subtracted from entire signal.
After DC removal process, the component at 0 Hz is removed
from the frequency spectrum of the signal.

y(t) = r(t)− μ (4)

where μ is the average amplitude of the received signal and y(t)
is the output of the DC removal system.

4.2. MUSIC Algorithm

In this part, we consider the estimation of the respiration
rate using Multiple Signal Classification (MUSIC) algorithm
which is a subspace based estimation method [4]. MUSIC al-
gorithm is commonly used to estimate the direction of arrival
of signals. MUSIC is a super-resolution technique and since
it works by separating signal and noise subspace and estimates
the frequency more accurate than sample windowed FFT based
methods.

Firstly, the covariance matrix model is introduced. A nota-
tion that will often be used in the following is:

a(f) = [1 e−j2πf ... e−j(m−1)2πf ]T (m× 1)

A = [a(f1) ... a(fn)] (m× n) (5)

where m is a positive integer which is number of samples in the
sequence. n is the number of unknown sinusoidal component.
It is assumed that n is known. If we collect m samples in a



vector as,

ỹ(t) =

⎡
⎢⎢⎢⎣

y(t)
y(t− 1)

...
y(t−m+ 1)

⎤
⎥⎥⎥⎦ = Ax̃(t) + w̃(t) (6)

The covariance matrix of ỹ(t) is defined as,

R = E{ỹ(t)ỹ∗(t)} (7)

MUSIC is derived from the covariance model in (7) with m >
n. The eigenvalues of R matrix are obtained as λ1 ≥ λ2 ≥
... ≥ λm and {s1, ..., sn} is a set of orthonormal eigenvectors
corresponding to {λ1, ..., λn} and {g1, ..., gm−n} are the or-
thonormal eigenvectors associated with {λn+1, ..., λm}. The
eigenvectors of R can be divided into two subsets as signal and
noise eigenvectors as shown in the following,

S = [s1, ..., sn](m×n), G = [g1, ...,gm−n](m×(m−n))

(8)
where S and G denote signal and noise eigenvectors, respec-
tively. The noise subspace G is orthogonal to Vandermonde
matrix A which is defined as,

A∗G = 0 (9)

where A is a function of the frequencies {fl}nl=1. The columns
of G belong to the null space of A as shown in (9). The MUSIC
algorithm is defined in two steps as follows,

• Step-1: Compute the sample covariance matrix

R̂ =
1

N

N∑
t=m

ỹ(t)ỹ∗(t) (10)

and its eigendecomposition. Ŝ and Ĝ are the signal and

noise eigenvectors obtained from R̂ matrix.

• Step-2: Determine respiration frequency estimates as the
locations of the n highest peaks of the estimation func-
tion

P̂music(f) =
1

a∗(f)ĜĜ∗a(f)
(11)

In this study, since there is a single patient, the number of sinu-
soidal signals is assumed to be one (n = 1). It is also possible
to monitor multiple patients (n > 1) with MUSIC algorithm.

4.3. Maximum Likelihood Estimation (MLE)

In [5], MLE of the respiration rate is given as an exten-
sion of the classical sinusoid parameter estimation problem. In
[5], a respiration rate estimator is proposed which calculates the
power spectral density (PSD) using the most recent N samples,
estimates the respiration rate as the frequency at the maximum
of the PSD. It is a good approximation of the MLE of frequency

f̂R is given by,

f̂R = argmax
fmin≤f≤fmax

∣∣∣∣∣
N∑
i=1

y(i)e−j2πfTsi

∣∣∣∣∣
2

(12)

where Ts is sampling period. This approximation works unless
the normalized frequency, fTs, is very close to 0 or 1/2.

5. Experimental Results
In this part, we design some experiments in laboratory in

order to observe the performance of the respiration monitoring
system. The measurements were taken for 10 minutes at the po-
sition where the participants were sitting on the chair between
the receiver and the transmitter antenna as shown in Fig. 2. The
distance between the transmitter and the receiver is specified as
2 meters. Our proposed MUSIC based method and FFT-based
MLE method in [5] are compared for the different window du-
rations and cases.

In Fig. 5, spectrum estimations of MUSIC algorithm and
the MLE based power spectral density (PSD) algorithm are
compared. The number of samples (window durations) are se-
lected as T = 40 sec for these two algorithm. In this simulation,
actual respiration rate is 15 bpm (0.25 Hz). In Fig. 5, the highest
peaks of the both spectrums show the respiration rate correctly.
It can be seen that MUSIC spectrum has a narrow peak with a
higher amplitude.

In Fig. 6, the actual respiration rate was 12 bpm (0.2 Hz)
and differently window duration is selected as 10 seconds in-
stead of 40 seconds. In this case, it is shown in figure that
the resolution of FFT-based method is quite low, on the other
hand MUSIC algorithm has a narrow peak with high gain. In
the case of low signal to noise ratio the MUSIC algorithm will
be more accurate and robust. Besides, in multiple person case,
FFT-based method can not distinguishes different frequencies
due to its low resolution.
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Figure 5. (Top) The power spectrum of the FFT-based MLE
method. (Bottom) Pseudospectrum estimation using MUSIC al-
gorithm. In both cases, window duration T = 40 sec and actual
respiration rate fR = 0.25 Hz (15 bpm).

Fig. 7 shows the performance comparison of the proposed
MUSIC based method and the FFT-based MLE method [5].
The Root-Mean-Square-Error (RMSE) of the two methods are
shown for different window durations. The window is shifted
along the 10 minutes data with 5 seconds intervals for all win-
dow durations. It can be seen in the figure, error rates decrease
with the increasing of window duration. However, selection of
the long window duration reveals some disadvantages. We take
the samples from the received signal for a duration T before es-
timating the respiration rate. So, window duration T is impor-
tant because it determines the waiting time. Moreover, the long
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Figure 6. (Top) The power spectrum of the FFT-based MLE
method. (Bottom) Pseudospectrum estimation using MUSIC al-
gorithm. In both cases, window duration T = 10 sec and actual
respiration rate fR = 0.2 Hz (12 bpm).

window duration causes to miss sudden changes in respiration
rate. The proposed MUSIC based method outperforms the FFT-
based MLE method for all window durations. As seen from the
figure, while the RMSE of the proposed method is lower than
0.2 bpm for all window durations T ≥ 30 s, the FFT-based
method reaches this rate for window durations approximately
T ≥ 40 s. Especially for short window duration (T < 30 s),
the performance of our proposed method is quite better than the
FFT-based MLE method. This is important for the respiration
monitoring system requiring low latency.
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Figure 7. The RMSE of our proposed MUSIC based method
and FFT-based MLE method [5] for different window durations.

6. Conclusion
In this paper, the contactless respiration monitoring system

which uses subspace based rate estimation algorithm is pre-

sented. The respiration of a person on the propagation path of
the signal between the transmitter and receiver causes changes
in the received signal strength. These changes in the received
signal strength are leveraged to estimate the respiration rate of
a person. In laboratory, we designed some experiments and we
used real measurements to show the performance of the pro-
posed respiration rate estimation method. The proposed sys-
tem uses complex raw data collected with SDR platform which
does not any limitation about frequency selection, bandwidth,
etc. The subspace based MUSIC algorithm is firstly applied for
respiration monitoring system using wireless communications
signals. It is shown with several experiments that the proposed
method can estimate the respiration rate of a person with 0.2
bpm RMS error. It is also shown that the proposed method out-
performs the MLE method. The performance of the MUSIC
algorithm that provides more accurate estimates with low sig-
nal strength and limited number of samples is shown through
real measurements.
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[7] O. Kaltiokallio, H. Yiğitler, R. Jäntti, and N. Patwari,
“Non-invasive respiration rate monitoring using a single
cots tx-rx pair,” in Information Processing in Sensor Net-
works, IPSN-14 Proceedings of the 13th International
Symposium on. IEEE, 2014, pp. 59–69.

[8] F. Adib, H. Mao, Z. Kabelac, D. Katabi, and R. C. Miller,
“Smart homes that monitor breathing and heart rate,” in
Proceedings of the 33rd Annual ACM Conference on Hu-
man Factors in Computing Systems. ACM, 2015, pp.
837–846.

[9] R. Ravichandran, E. Saba, K.-Y. Chen, M. Goel, S. Gupta,
and S. N. Patel, “Wibreathe: Estimating respiration rate
using wireless signals in natural settings in the home,”
in Pervasive Computing and Communications (PerCom),
2015 IEEE International Conference on. IEEE, 2015,
pp. 131–139.

[10] L. Davies and U. Gather, “The identification of multiple
outliers,” Journal of the American Statistical Association,
vol. 88, no. 423, pp. 782–792, 1993.


