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2. Physical and Performance Parameters of 
Microbolometers 

 
There are various physical parameters affecting the 

performance of microbolometers. The most important ones are 
thermal conductance, thermal capacitance, and thermal time 
constant. 

The thermal conductance is the parameter showing the 
isolation level of the pixel from the substrate. It directly depends 
on the physical dimensions and the thermal conductivities of the 
layers in the support arms. The thermal conductance can be 
found as: 
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where σ is thermal conductivity of the material used in the 
support arm, A is the cross-sectional area of the support arm, 
and L is the length of the support arm. 

Thermal capacitance is the parameter that shows how much 
heat can be stored. It is expressed as: 
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where V is the volume of the active detector area, ρ is the 
density, and Cp is the heat capacity of the material. 

The thermal time constant expresses how fast the detector 
gives response to infrared radiation. It is desired to have smaller 
thermal time constant value to obtain faster detectors. The 
thermal time constant is specified by: 

 

                                         ߬ ൌ 	
஼೟೓
ீ೟೓

                                        (3) 

 
where Cth is the thermal capacitance and Gth is the thermal 
conductance.  

These parameters affect directly the responsivity and noise 
equivalent temperature difference (NETD) of the pixels which 
are the most important performance parameters. Responsivity is 
the electrical response of the detector with respect to absorbed 
unit infrared power and it is expressed as: 
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where η is the absorption coefficient, Id is the detector current, 
Rd is the detector resistance, α is the temperature coefficient of 
resistance (TCR) value, and Gth is the thermal conductance. 
NETD is a performance parameter that shows how small 
temperature difference the microbolometer can detect the target 
scene. Smaller NETD indicates better performance. The NETD 
value is calculated by: 
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where F is a function of distance from the optics to the target, Vn 
is the total RMS noise voltage, τ0 is the transmission of the 
optics, AD is the active detector area, Ը௩  is the voltage 
responsivity of the detector, (ΔP/ΔT)λ1–λ2 is the change of power 
per unit area radiated by a blackbody at temperature T, 
measured within the spectral band of  λ1–λ2. 

The physical parameters are designed to get the maximum 
performance from the detectors, i.e., to maximize the 
responsivity and to minimize the NETD. 

3. Design of Hexagonal Pixel 
  
Fig. 3 shows the layout view of the designed hexagonal pixel 

for this study which has 34 µm diagonal distance together with 
the structural parameters.  34 µm is chosen to make a 
comparison with rectangular type pixel with a pitch of 35 µm.  
Arm and gap widths are selected as 1 µm due to fabrication 
requirements needed for a future fabrication process. ZnO is 
used as structural and absorber layers, and gold is used as mirror 
layer of the designed hexagonal pixel. The thickness of the ZnO 
is selected as 50 nm since the ZnO is planned to be coated with 
Atomic Layer Deposition (ALD) technique which is suitable for 
low thickness values. 

Fig. 4 shows the 3-D view of the hexagonal microbolometer 
obtained using the COMSOL software and the process flow 
proposed in [13]. In the 3-D view, yellow area represents the 
mirror layer used to increase the absorption, and the red area 
represents structural and absorber layer of the hexagonal 
microbolometer structure. 

  

 
 

Fig. 3. Hexagonal pixel layout and the structural parameters. 
 

 
   

Fig. 4. 3-D view of the hexagonal pixel. 
 

4. Thermal Simulations 
 

After constructing the 3D model of the hexagonal 
microbolometer pixel, the thermal simulations are conducted 
using the COMSOL software. The physical parameters of ZnO 
required for the thermal simulations are taken from COMSOL 
database as: 5.67 gr/cm3 for density, 505.73 J/kgK for heat 
capacity, and 61.85 W/mK for thermal conductivity . The 
simulations are realized by applying 100 nW heat to the pixel 



for some time period and checking the steady-state temperature 
of the pixel together with the transient response.  The heating 
curve is drawn according to the transient response which is 
actually the temperature value of the pixel corresponding to the 
fixed time steps.   

Fig. 5 shows the thermal simulation results of both designed 
hexagonal pixel and a rectangular pixel that has 35 µm pixel 
pitch.  The same structural parameters of 1 µm arm and gap 
widths with 50 nm ZnO thickness are used for the rectangular 
pixel to compare with the hexagonal pixel.  It is observed that 
the steady-state temperature difference of the hexagonal pixel 
and the rectangular pixel are 0.676 K and 0.885 K, respectively. 
Thermal conductance (Gth) of the pixels are calculated with the 
applied heat divided by temperature difference, and obtained as 
1.48x10-7 W/K for the hexagonal pixel and 1.13x10-7 W/K for 
the rectangular pixel.  As can be seen from the results the 
hexagonal pixel having approximately same structural values 
with the rectangular pixel can provide close performance 
parameters. 

Fig. 6 shows the heating curve of the hexagonal pixel.  The 
thermal time constant of the hexagonal microbolometer pixel is 
obtained as 0.69 ms from the fitting result of the heating curve 
while it is 1.54 ms for the rectangular pixel.  Both of the pixels 
are suitable for 30 fps infrared imaging which is the most 
common imaging speed [14].  The thermal time constant of the 
hexagonal pixel is lower making it suitable also for faster 
applications.   

 

 
(a) 

 

 
(b) 

 

Fig. 5. Thermal simulation results of the (a) hexagonal pixel and 
(b) rectangular pixel. 

 
 

Fig. 6. Heating curve of the hexagonal pixel. 
 

5. Conclusion 
 

A hexagonal pixel based on inspiration of arthropod eyes is 
designed for flexible substrates for the first time in literature, 
and its thermal simulations are performed. The hexagonal 
pixel’s structural parameters are chosen as 1 µm arm and gap 
widths, with 34 µm diagonal length.  Gold is used as mirror 
layer and 50 nm thickness of ZnO is used as structural and 
absorber layer. According to thermal simulations realized by 
application of 100 nW heat, time constant is obtained as 0.69 ms 
and the thermal conductance is obtained as 1.48x10-7 W/K. 
Table 1 shows the physical parameters of the detectors together 
with some calculated performance values.  When compared with 
the results of rectangular shaped microbolometer pixel, it is seen 
that the hexagonal shaped pixel has a good potential to be used 
in especially flexible infrared imaging systems in terms of its 
thermal features.   

 
Table 1. The physical parameters of the detectors together with 
some calculated performance values. 
 

Parameter 
Hexagonal  

Pixel 
Rectangular 

Pixel 

Pixel dimensions (µm) 
34 

(Diagonal) 
35 x 35 

Resistance (kΩ) 135  
Active detector area (µm2) 358.4 689.3 

Fill factor (%) 47.5 56.3 
TCR (%/K) -10.4 
Thermal conductance (W/K) 1.48x10-7 1.13x10-7 
DC responsivity (V/W) 6.98x105 9.2x105 
Absorption coefficient (%) 50 
FPA size 384 x 288 
Integration time @30 fps 100 
Electrical bandwidth (kHz) 5 
Detector noise (µVrms) 27  
Transmission of optics 0.93 
NETD (mK) 221.5 87.4 
Time constant (ms) 0.69 1.54  
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