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Abstract 
 

Model predictive control is an optimal control method that 

requires the solution of a quadratic programming problem 

with constraints at each sampling time. In this study, an 

active set method is used to solve the problem. The whole 

control algorithm is written through Matlab editor so that it 

can be run in embedded systems. A ball and beam system 

model is utilized to investigate the performance of the 

controller structure. The simulations are conducted with two 

different cost functions. The results illustrate that the 

constructed control system exhibits satisfactory performance 

in the sense of system response and constraints. 
 

1. Introduction 
 

Model predictive control (MPC) is a well-known model 
based optimal control method for systems with constraints. MPC 
has used by most of the academic researches and industrial 

applications in these days, however, its history dates back to 
1970s. Most primitive examples of MPC are model predictive 
heuristic control method [1], dynamic matrix control method [2] 
and quadratic matrix control method [3]. The first 
comprehensive exposition of generalized predictive control is 
presented in [5] and [6]. The formulation of MPC based on the 
state space approach is presented in [7]. A discrete time MPC 
design using Laguerre functions are in a discrete form is given 
in [8]. A solution to the problem of robust MPC of constraint 

linear discrete time systems in the presence of bounded 
disturbances is given in [9], and a neural network based MPC is 
given [10]. As the original MPC algorithm is developed for 
linear systems, however, it is extended for non-linear systems in 
time [11], [12]. Past achievements, some current developments 
and a few avenues for future research are given in [13]. Some 
implementation of MPC for magnetic levitation system is 
presented in [14], for ball and beam system in [15], [16]. 

In classical MPC design, the control problem that contains 
the linear model of the system, constraints and a cost function is 
transformed into a quadratic programming (QP) problem. And 
the control signal is obtained by solving the QP problem in each 
step by utilizing an optimization algorithm. Active set method 
(ASM) and interior-point method (ISM) are the most commonly 
employed approaches for solving QP, and the other algorithms 
are generally based on these methods. The computational 

complexity of ISM is larger compared with ASM per iteration. 
ASM has less complexity and converges faster when the number 
of variables and the constraints are small [17].  

In this study, a MPC that uses ASM algorithm is designed for 
linear time invariant systems. The ASM algorithm is written by 
hand by the help of Matlab m-file editor. The performance of 
the controller is investigated by using a ball and beam model in 
Matlab Simulink. The motivation of the study is to acquire an 

MPC algorithm with optimization code that can be compiled and 
used in embedded systems.  

The paper is organized as follows: the general information 
about MPC, problem description and primal active set method is 
given in Section 2. The modelling of ball and beam system and 
simulation results are given in Section 3 and the conclusions are 
highlighted in Section 4. 

 

2. Model Predictive Control 
 

      Model predictive control is a model based optimal control 
method that solves the constrained finite-horizon optimization 
problem by predicting the future behavior of system variables 
using the current state of the system at each sampling time. The 
predictions along the prediction and control horizon are 
calculated in order to minimize a cost function that generally 
depends on error and control signal. Only the first element of the 
obtained optimal control sequence is applied to the real system 

and the whole algorithm is repeated by measuring or observing 
the system output at the next sampling time. 

In the method, the cost function to be optimized depends on 
error and control signals along prediction and control horizon, 
respectively. The optimal control sequence that minimizes the 
cost function is obtained along the control horizon by using the 
prediction of system states. Only the first element of the 
sequence is applied to the real system and the whole algorithm is 

repeated by measuring or estimating the system output at the 
next sampling time. The receding horizon control strategy 
provides the system a feedback and in this way, it is possible 
allows to compensate the modeling errors and the disturbances 
that affect to the system [18], [19]. 

Basically, a MPC loop consists of a system model, a cost 
function and a optimization tool. There are two essential 
parameters in the loop: Prediction horizon Ky and control 

horizon Ku. Whereas the prediction horizon refers to the length 

of horizon to be predicted, the control horizon defines the 
number of elements in the candidate control sequence to be 
applied to the system during the prediction horizon. Therefore, 

the inequality 𝐾𝑢 ≤ 𝐾𝑦   must always be satisfied and the 

elements after the Ku
th

 of candidate control sequence must be 
equal to the Ku

th
 element of the sequence. The basic structure of 

MPC is shown in Fig. 1 [20], [21]. 
 

 
Fig. 1. The basic structure of the model predictive control.  
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Briefly, an MPC loop consists ofhas three basic steps: 

1. Step 1: The prediction vector is obtained from the system 
model using the measure or estimated system states and 
optimized candidate control sequence. 
2. Step 2: The candidate control sequences that minimizes the 
cost function are determined evaluated by a suitable 
optimization method. The cost function is often chosen as error 
between the reference and output and a structure penalizing 
control sequence signal.  

3. Step 3: The first element of the optimized control sequence is 
applied to the real system. Then, the next sample is taken and 
Step 1 is repeated. 

 

2.1. Problem Description 
 

A discrete-time system single input single output linear time 
invariant system is considered. Such a discrete-time system is 
expressed in the state space form as follows: 

 

             𝑥[𝑛 + 1] = 𝐴 𝑥[𝑛] + 𝐵 𝑢[𝑛] 
   𝑦[𝑛] = 𝐶 𝑥[𝑛] 

(1) 

 

where 𝑥[𝑛] ∊ ℝ𝑛 , 𝑢[𝑛] ∊  ℝ ,  𝑦[𝑛] ∊ ℝ  are state variables, 

input and output signals, respectively. A, B and C matrices are 
the system matrices discretized with sampling time  𝑇𝑠 . The 

general control problem, under assumption that the reference 
signal (𝑟[𝑛]) is known in advance, is described as to find 

optimal control signal (𝑢[𝑛]) that minimizes the tracking error 

of controlled system for future values along prediction horizon 
with subject to the constraints on control signal and system 
states 

 

    𝑢𝑚𝑖𝑛 ≤ 𝑢[𝑛 + 𝑘] ≤ 𝑢𝑚𝑎𝑥 , 𝑘 = 0,1,⋯ ,𝐾𝑢 

|𝑢[𝑛 + 𝑘] − 𝑢[𝑛 + 𝑘 − 1]| ≤ 𝛥𝑢𝑚𝑎𝑥 , 𝑘 = 1,⋯ ,𝐾𝑢 

𝑥𝑚𝑖𝑛 ≤ 𝑥[𝑛 + 𝑘] ≤ 𝑥𝑚𝑎𝑥 , 𝑘 = 0,1,⋯ ,𝐾𝑦 

(2) 

 
Accordingly, the cost function can be written as 

 

𝑓(𝒖) = ∑(𝑟[𝑛 + 𝑘] − �̂�[𝑛 + 𝑘])2

𝐾𝑦

𝑘=1

+ 𝜆 ∑(𝑢[𝑛 + 𝑘] − 𝑢[𝑛 + 𝑘 − 1])2

𝐾𝑢

𝑘=1

 

(3) 

 
where y ̂[𝑛] is predicted output, λ is a parameter which 

penalizes changes in control signal. System output can be 
predicted for each step using (1). When the prediction of output 
is continued along prediction horizon, the cost function is 
written in the form 

 
𝑓(𝒖) =
𝒖𝑇(𝑴𝑇𝑴 + 𝜆 𝑳)𝒖 − (2(𝑹𝒏 −         𝒁 �̂�[𝑛])𝑇𝑴 +
2[𝜆 𝑢[𝑛 − 1] 0 ⋯ 0]) 𝒖 + 𝑆  

(4) 

 
where 
 

𝑳 =

[
 
 
 
 
 

2 −1 0 ⋯ 0 0
−1 2 −1 ⋯ 0 0
0 −1 2 ⋱ 0 0
0 0 −1 ⋱ −1 0
0 0 0 ⋱ 2 −1
0 0 0 ⋯ −1 1 ]

 
 
 
 
 

(𝐾𝑢+1)×(𝐾𝑢+1)

 

𝑴 =

[
 
 
 
 
 
 

𝐶𝐵 0 0 ⋯ 0
𝐶 𝐴 𝐵 𝐶𝐵 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
𝐶 𝐴𝐾𝑢𝐵 𝐶 𝐴𝐾𝑢−1𝐵 𝐶 𝐴𝐾𝑢−2𝐵 ⋯ 𝐶 𝐵

𝐶 𝐴𝐾𝑢+1𝐵 𝐶 𝐴𝐾𝑢𝐵 𝐶 𝐴𝐾𝑢−1𝐵 ⋯ ∑ 𝐶 𝐴𝑖𝐵1
𝑖=0

⋮ ⋮ ⋮ ⋱ ⋮

𝐶 𝐴𝐾𝑦−1𝐵 𝐶 𝐴𝐾𝑦−2𝐵 𝐶 𝐴𝐾𝑦−3𝐵 ⋯ ∑ 𝐶 𝐴𝑖𝐵
𝐾𝑦−𝐾𝑢−1

𝑖=0 ]
 
 
 
 
 
 

, 

𝒁 =

[
 
 
 
 
 
 

𝐶 𝐴
𝐶 𝐴2

⋮
𝐶 𝐴𝐾𝑢+1

𝐶 𝐴𝐾𝑢+2

⋮
𝐶 𝐴𝐾𝑦 ]

 
 
 
 
 
 

 , 𝒖 = [

𝑢[𝑛]

𝑢[𝑛 + 1]
⋮

𝑢[𝑛 + 𝐾𝑢]

] , 𝑹𝒏 =

[
 
 
 
 
 
 

𝑟[𝑛 + 1]

𝑟[𝑛 + 2]
⋮

𝑟[𝑛 + 𝐾𝑢 + 1]

𝑟[𝑛 + 𝐾𝑢 + 2]
⋮

𝑟[𝑛 + 𝐾𝑦] ]
 
 
 
 
 
 

, 

𝑆 = (𝑹𝒏 − 𝒁 �̂�[𝑛])𝑇(𝑹𝒏 − 𝒁 �̂�[𝑛]) + 𝜆 𝑢2[𝑛 − 1] 
 

Note that S does not depend on the control variables, thus it 
is not included in the optimization process [20], [22]. In some 
cases, the cost function in (4) is not sufficient for fast system 

response. As a solution to this problem, it is possible to multiply 
the tracking error term with time in (4), as it is in ITSE (integral 
time-square error) index. In this case, the cost function becomes 

 

𝑓(𝒖) = 𝒖𝑇(𝑡 𝑴𝑇𝑴+ 𝜆 𝑳)𝒖− (2 𝑡 (𝑹𝒏 −
        𝒁 �̂�[𝑛])𝑇𝑴+ 2[𝜆 𝑢[𝑛 − 1] 0 ⋯ 0]) 𝒖 + 𝑆  

(5) 

 

where t denotes time. As a result, MPC problem can be 
expressed as 

 

min
𝑢

𝑓(𝒖) =
1

2
𝒖𝑇𝐺 𝒖 + 𝑔𝑇  𝒖 

                  𝑢𝑚𝑖𝑛 ≤ 𝑢[𝑛 + 𝑘] ≤  𝑢𝑚𝑎𝑥 , 𝑘 = 0,1,⋯ ,𝐾𝑢 

subject to  | 𝑢[𝑛 + 𝑘] − 𝑢[𝑛 + 𝑘 − 1]| ≤ 𝛥𝑢𝑚𝑎𝑥 ,   𝑘 = 1,⋯ ,𝐾𝑢 

                    𝑥𝑚𝑖𝑛 ≤ 𝑥[𝑛 + 𝑘] ≤  𝑥𝑚𝑎𝑥 , 𝑘 = 0,1,⋯ ,𝐾𝑦 

 

where 𝐺 = 2(𝑴𝑇𝑴 + 𝜆 𝑳)  or 𝐺 = 2 𝑡 (𝑴𝑇𝑴+ 𝜆 𝑳)  
and 𝑔𝑇 = −(2(𝑹𝒏 − 𝒁 �̂�[𝑛])𝑇𝑴 + 2[𝜆 𝑢[𝑛 − 1] 0 ⋯ 0]) 
or 𝑔𝑇 = −(2 𝑡 (𝑹𝒏 − 𝒁 �̂�[𝑛])𝑇𝑴+ 2[𝜆 𝑢[𝑛 − 1] 0 ⋯ 0]) 

depends on the type of cost function. 
This is a quadratic programming (QP) problem with 

inequality constraints. The solution of the problem is in the form  
 

𝒖∗ = [𝑢[𝑛] 𝑢[𝑛 + 1] ⋯ 𝑢[𝑛 + 𝐾𝑢]] (6) 

 

and the first element of the control vector is applied to the 
system at each sampling time. Note that the optimization time 
must be always less than sampling time. 

 

2.2. Primal Active Set Method 
 

The QP with inequality constraints is defined as 
 

min
𝑢

𝑓(𝑥) =
1

2
 𝑥𝑇  𝐺 𝑥 + 𝑔𝑇𝑥 

                            subject to 𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖 

 
where 𝐺 ∊ ℝ𝑛×𝑛   is a symmetric and positive definite matrix, 

and the region 𝛺 = {𝑥 ∊ ℝ𝑛 ∶  𝑎𝑖
𝑇𝑥 ≥ 𝑏𝑖  , 𝑖 ∊ 𝐼} is called as 

feasible region. The basic principal of primal active set method 
is to evalute a feasible sequence {𝑥𝑘 ∊  𝛺}  which decreases the 

value of the cost function, 𝑓(𝑥𝑘 + 1) < 𝑓(𝑥𝑘) . The method 

starts with a feasible initial point and ensures all iterations 
remain in the feasible region. 



      In the method, for each step, the set of  inequality constraints 

provided as equality is utilized.This set is named as current 

active set and denoted by  𝒜(𝑥𝑘) , 𝒜(𝑥𝑘) = {𝑖 ∊ 𝐼 ∶  𝑎𝑖
𝑇𝑥𝑘 =

𝑏𝑖  }. For the feasible point 𝑥𝑘 the corresponding working set is 

denoted by 𝒲𝑘 . 𝒲𝑘  is a subset of the active set 𝒜(𝑥𝑘) ,  

𝒲𝑘 ⊂ 𝒜(𝑥𝑘) , and its colums are selected from linearly 

independent columns of 𝒜(𝑥𝑘). 
      Then, the equality constraint QP subproblem with the 
feasible point 𝑥𝑘 and working set 𝒲𝑘 at the kth iteration defined 

as follows:  
 

min
𝑝∊ℝ𝑛

𝑓(𝑝) =
1

2
 𝑝𝑇  𝐺 𝑝 + (𝐺 𝑥𝑘 + 𝑔)𝑇𝑝 

subject to  𝑎𝑖
𝑇𝑝 = 0, 𝑖 ∊ 𝒲𝑘 

 
where p is improving direction.. The Karush-Kuhn-Tucker 

(KKT) conditions that solve the above problem are defined as 
 

𝐺 𝑥𝑘 + 𝑔 − ∑𝑎𝑖  µ𝑖
∗ = 0

𝑖∊𝐼

 

𝑎𝑖
𝑇  𝑝∗ = 𝑏𝑖        µ𝑖

∗ ≥ 0          𝑖 ∊ 𝒲𝑘 

    𝑎𝑖
𝑇𝑝∗ ≥ 𝑏𝑖        µ𝑖

∗ = 0          𝑖 ∊ 𝐼\𝒲𝑘 

(7) 

 
where µi is Lagrange multiplier. To decide how far to move 

along the direction 𝑝∗, the step length 𝑎𝑘  in the range [0, 1) is 

calculated by the following formula: 
 

𝛼𝑘 = 𝑚𝑖𝑛(1, min
𝑖∊𝐼\𝒲𝑘:𝑎𝑖

𝑇𝑝∗<0 

𝑏𝑖 − 𝑎𝑖
𝑇𝑥

𝑎𝑖
𝑇𝑝∗

) ≥ 0 (8) 

 
The step length provides greatest reduction of the objective 

function in the 𝑝∗ direction without leaving the feasible region. 

Then, the next feasible point ( 𝑥𝑘+1 ) is calculated, 
𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘  𝑝∗. 

If 𝛼𝑘 < 1, it means that the uni step in the optimal improving 
direction (𝑝∗) intersects with a constraint that is not in the set  

𝒲𝑘  and thus the intersecting constraint is added to the next 

working set (𝒲𝑘+1). On the other hand, if at least one of the 

Lagrange multipliers (µi) is negative when p∗ = 0, the constraint 

corresponding to the most negative Lagrange multiplier is 
removed from the working set. In such a case, the solution is not 

optimal because the KKT conditions is not satisfied and 
removing the constraint with the most negative Lagrange 
multiplier reduces the cost function [23], [24]. 
      These steps are repeated until 𝑝∗ = 0 which is optimal 

solution satisfied with conditions µ𝑖
∗ ≥ 0, 𝑖 ∊ 𝒲𝑘. The detailed 

algorithm of the method is given in Table 1. 
 

3. Simulation Studies 
 

3.1. System Modeling 
 

In this section we desire to control a ball and beam system. 
The objective of ball and beam system is to stabilize the ball to a 
desired position along the beam. As schematically illustrated in 

Fig. 2, a ball and beam system is comprised of two plants: a 
servo motor with transmission elements and beam element that 
allows the ball to roll freely with nonlinear dynamics. By 
controlling the position of the servo motor, hence the motor 
voltage, beam angle is adjusted to balance the ball to a desired 
position [25]. 

Table 1. Primal active set method algorithm. 

 

 

Initialization: Specify a feasible point (𝑥0) and then create the 

corresponding working set 𝒲0  oluştur. 

while NOT STOP do %Calculation of the improving direction% 

Calculate the improving direction,𝑝∗ , by solving QP problem 

with equality constraints. 

min
𝑝∊ℝ𝑛

𝑓(𝑝) =
1

2
 𝑝𝑇  𝐺 𝑝 + (𝐺 𝑥𝑘 + 𝑔)𝑇𝑝 

subject to 𝑎𝑖
𝑇𝑝 = 0, 𝑖 ∊ 𝒲𝑘 

 

if ‖𝑝∗‖ = 0 then %Calculation of Lagrange multipliers % 

 Calculate Lagrange multipliers 

∑ 𝑎𝑖  µ𝑖 = 𝐺 𝑥 + 𝑔

𝑖∊ 𝒲

 

𝑖 ∊ 𝐼\𝒲 ise  µ𝑖 = 0 

 

if   µ𝑖 ≥ 0  for ∀ 𝑖 ∊  𝒲  then 

STOP % optimal solution is founded % 

else % removing constraint% 

                    𝑥 = 𝑥 

Remove constraint 𝒲𝑗  for µ𝑗 < 0 

end 

else %calculation of the step length %  

𝛼 = 𝑚𝑖𝑛 (1, min
𝑖∊𝐼\𝒲𝑘:𝑎𝑖

𝑇𝑝∗<0 

𝑏𝑖 − 𝑎𝑖
𝑇𝑥

𝑎𝑖
𝑇𝑝∗

) 

 𝐽 = arg min𝑖∊𝐼\𝒲𝑘:𝑎𝑖
𝑇𝑝∗<0 

𝑏𝑖−𝑎𝑖
𝑇𝑥

𝑎𝑖
𝑇𝑝∗

 

if 𝛼 < 1 then %appending a constraint%  

𝑥 = 𝑥 + 𝛼 𝑝∗ 

Append constraint 𝒲𝑗  

else 

𝑥 = 𝑥 + 𝑝∗ 

𝒲 = 𝒲 

end 

end 

end 
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Fig. 2. Ball and beam schematic diagram. 
 

The linearized (around origin) dynamic motion equation of 
ball and beam system is writen as 

 
𝑑2𝜃(𝑡)

𝑑𝑡2
= −

1

𝜏

𝑑𝜃(𝑡)

𝑑𝑡
+

𝐾

𝜏
𝑢(𝑡) 

𝑑2𝑟(𝑡)

𝑑𝑡2
= 𝐾𝑏𝑏 𝜃(𝑡) 

(9) 

 



where 𝜃(𝑡) is the motor angular position, 𝑢(𝑡) is the motor 

voltage, 𝑟(𝑡)  is the ball position, 𝐾  is the motor and 

transmission steady state gain, 𝜏 is the motor time constant and 

𝐾𝑏𝑏  is the gain between ball position and motor angle. The 

states of system are defined as [𝑥]𝑇 = [𝑥1 𝑥2 𝑥3 𝑥4]𝑇 =
[𝜃(𝑡) �̇�(𝑡) 𝑟(𝑡) �̇�(𝑡)]𝑇 , system input and output are 

defined as motor voltage and ball position, respectively. Then 
the state space representation of the system can be written as 

 

�̇� =

[
 
 
 
 

0 1 0 0

0 −
1

𝜏
0 0

0 0 0 1
𝐾𝑏𝑏 0 0 0]

 
 
 
 

 𝑥 +

[
 
 
 
 
0
𝐾

𝜏
0
0]
 
 
 
 

𝑢 

𝑦 = [0 0 1 0] 𝑥 

(10) 

 

The system also has the following constraints on system 
input and states due to the mechanical and electrical structure of 
the system: 

 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤  𝑢𝑚𝑎𝑥 

𝜃𝑚𝑖𝑛 ≤ 𝜃(𝑡) ≤ 𝜃𝑚𝑎𝑥  

𝑥𝑚𝑖𝑛 ≤ 𝑥(𝑡) ≤ 𝑥𝑚𝑎𝑥  

(11) 

 

As seen from (10), system matrix, 𝐴 has two eigenvalue at 

the origin, which destroys the stability of system. Therefore, 

before applying MPC, the system must be prestabilized with a 
state feedback matrix, 𝐿 that makes 𝐴 − 𝐵 𝐿  matrix Hurwitz. 

Then, the control signal, with MPC and state feedback, applied 
to the system will become 𝑢 − 𝐿 𝑥. Once system is stabilized, 

next step is to discretize the system. Here, since ball and beam 
system is a relatively slow system, sampling time is chosen as 
𝑇𝑠 = 0.1 for discritezation. 

In MPC algorithm, prediction horizon 𝐾𝑦, control horizon 𝐾𝑢 

and penalty parameter λ are selected as 12, 3 and 0.3 

respectively. The constant matrices𝑀 and 𝑍 and depending on 
them 𝐺  matrix in the cost function are calculated as given in 

previous section. Note that the vector 𝑔, is updated at each step 

according to the current state, the previous control signal and the 

reference vector.  
Final step is to transform the constraints on control signal and 

states into the form 𝑎𝑖
𝑇𝑢[𝑛 + 𝑘] ≥ 𝑏𝑖  for 𝑘 = 0,1,⋯ ,𝐾𝑢 to be 

used in primal active set method. For detailed explanation for 
these inequality expression transforms, see [20, 22]. 

With these adjustments, the QP with inequality constraints is 
established and the control signal applied to the system at each 
step is calculated by means of the written primal active set 
method algorithm. 

 

3.2. Simulation Results 
 

To investigate the performance of written MPC algorithm, 
the simulation diagram in Fig. 3 is constructed in 
Matlab/Simulink. The parameters of ball and beam system are 

taken from Quanser experiment set [25] and given in Table 2. 
The cost function evaluation and primal active set algorithm 

are integrated to the simulation through embedded Matlab 
functions. For prestabilization, the gain matrix 𝐿 =
[3.67 0.08 28.86 22.54] is utilized.  

 

 
 

Fig. 3. Block diagram of ball and beam control system with 
MPC. 

 

Table 2. Ball and beam system parameters. 
 

Parameter Value 

Motor steady state gain, 𝐾 1.53 [𝑟𝑎𝑑/(𝑠 𝑉)] 

Time constant, 𝜏 0.0248 [𝑠] 

Linearized gain of beam dynamics, 𝐾𝑏𝑏  0.418 [𝑚/(𝑠2 𝑟𝑎𝑑)] 

Min, max motor voltage, 𝑢𝑚𝑖𝑛, 𝑢𝑚𝑎𝑥 ±12 [𝑉] 

Min, max motor position, 𝜃𝑚𝑖𝑛, 𝜃𝑚𝑎𝑥 

Min, max ball position, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 

± π/4 [𝑟𝑎𝑑] 

0 [𝑐𝑚] and 0.5 [𝑐𝑚] 

 

 
Fig. 4. Ball position using cost function with and without time. 

 
In simulations, a square wave with frequency of 0.025 Hz 

and amplitude of 0.2 is used as reference ball position. The 
simulations are performed for two cost functions, cost function 
without time given in (4) and cost function with time given in 

(5). The results for ball position, motor voltage (control signal) 
and motor angular position are given in Figs. 4 – 6, respectively. 
In both cases motor angular position and voltage are within their 
boundaries. 

 
Fig. 5. Motor voltage using cost function with and without time. 
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Fig. 6. Motor angular position using cost function with and 

without time. 
 

As seen from figures, in case of cost function with time 
system response is faster but has a small overshoot as expected. 
In the first cycle, as the simulation has just started, MPC 
algorithm cannot predict the first reference change in advance 
and therefore, the settling time is larger. Nevertheless, this 
phenomenon is not experienced clearly in case of cost function 

without time, because the term that penalizes control signal 
dominates the tracking error in the cost function.  

It is worth noting that, when considering the real system the 
motor voltage needs to exceed a certain value to move the beam. 
Therefore, in case of cost function without time the change of 
control signal is not reasonable.  

 

4. Conclusion 
 

In this study, a model predictive controller is designed for 

linear systems based on the active set algorithm as the 
optimization method. The whole algorithm is written in Matlab 
editor by authors, and it is suitable for run in embedded systems. 
For the case study, a ball and beam system is practiced. 
Simulations are conducted to verify the performance of the 
proposed structure and found that the transient and steady state 
response is satisfactory and constraints are provided. Significant 
improvements of the transient response and admissible control 
signal for real system are obtained when time term is added to 

the cost function in MPC algorithm. As future work, it is 
planned to apply this MPC algorithm to Quanser ball and beam 
system. 
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