
Design of Sequences with Low Autocorrelation Sidelobes using Genetic
Algorithms
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Abstract

Unimodular constant modulus sequences with desirable au-
tocorrelation function properties are widely used in radar
and communication systems. One of the performance met-
rics that determine the goodness of a designed sequence is
the integrated sidelobe level (ISL) of the autocorrelation
function of the sequence. Studies in the literature have fo-
cused on minimizing the metric of ISL. In this study, we
utilize genetic algorithm (GA) to minimize ISL in the fre-
quency domain. The proposed algorithm is initialized by
either a random sequence or the Golomb sequence whose
autocorrelation is known to have good properties. By this
way, a radar transmit signal with minimum ISL is designed
using GA. Finally, performance of GA is compared against
the already existing cyclic-new (CAN) algorithm. The simu-
lations indicate that minimization of ISL using GA produces
better results than the CAN algorithm. Hence, GAs could
alternatively be used to design radar transmit sequences by
minimizing ISL in the frequency domain.

1. Introduction
Sequences with good autocorrelation function properties

are widely used in radar systems as transmit signals and in com-
munication systems for synchronization purposes. Therefore,
having desirable autocorrelation properties is an important is-
sue in designing a radar transmit sequence. There are some per-
formance metrics for determining the goodness of a designed
sequence. One of them is called integrated sidelobe level (ISL)
of the autocorrelation function of the designed sequence. A low
ISL value is an indicator that the designed sequence is of desir-
able type.

Let {xn}Nn=1 denote a unimodolar constant modulus se-
quence so that it satisfies the following constraint

|xn| = 1, n = 1, . . . , N. (1)

Aperiodic autocorrelation function of xn can be calculated as

rk =

N∑
n=k+1

xnx
∗
n−k = r∗−k, k = 0, . . . , N − 1. (2)

The ISL metric can be defined [1–3] in terms of rk as

ISL =

N−1∑
k=1

|rk|2. (3)

Merit factor (MF) [1] is another metric related to ISL as

MF =
N2

2(ISL)
=

|r0|2
N−1∑

k=−(N−1)
k 6=0

|rk|2
. (4)

Scientists have long been working extensively to design se-
quences having low ISL (i.e. high MF) values. Both analytic
and computational methods have been proposed to come up
with such sequences. Following some binary codes (such as
Barker codes) suggested early, the so-called polyphase codes
are designed in later years [4]. Some well-known polyphase
codes have closed form expressions such as Frank [5], Chu [6],
and Golomb [7] sequences. Some optimization methods such
as genetic algorithms (GAs), heuristic search, and stochastic
optimization method have also been used to design waveforms
with good autocorrelation properties [2]. Moreover, it is shown
that it is possible to design sequences having low ISL [1, 8]
or low weighted-ISL (WISL) [1] values by using the so-called
cyclic algorithms (CAs). Power spectral density (PSD) fitting
approach is another method proposed for sequence design with
low WISL [9]. In [1], CA-new (CAN) algorithm has been
proposed to minimize the ISL value of a sequence based on
the definition of autocorrelation function in the frequency do-
main. However, CAN minimizes an ISL-related metric which
is a quadratic approximation of the exact ISL.

In this study, GA is employed to synthesize unimodular sig-
nal sequences with low ISL and the results are compared against
CAN. In Section 2, the optimization problem for minimizing
ISL is introduced and the CAN algorithm is briefly summarized.
In Section 3, GAs are reviewed. In Section 4, simulation results
and MF performances of GAs and CAN are given. Finally, in
Section 5, our concluding remarks are given.

2. Problem Formulation and Existing
Methods

Designing a unimodular constant modulus sequence with
good autocorrelation sidelobe properties amounts to solving a
constrained optimization problem. Thus, subject to |xn| = 1
for n = 1, . . . , N , one minimizes ISL to obtain a sequence
{xn}Nn=1. The CAN algorithm was previously proposed to
solve this optimization problem iteratively.

2.1. CAN

Autocorrelation function can be defined [10] in the fre-
quency domain as follows



∣∣∣∣∣
N∑
n=1

xne
−jωn

∣∣∣∣∣
2

=

N−1∑
k=−(N−1)

rke
−jωk , Φ(ω), (5)

where Φ(ω) represents power spectral density of xn and ω ∈
[0, 2π]. Then, the metric of ISL in (3) can be rewritten by using
the definition given in (5) as [1, 8]

ISL =
1

4N

2N∑
p=1

[Φ (ωp)−N ]2 (6)

where {ωp}2Np=1 is defined as

ωp =
2π

2N
p, p = 1, . . . , 2N. (7)

ISL can also be written using (5) and (6) as follows

ISL =
1

4N

2N∑
p=1

∣∣∣∣∣
N∑
n=1

xne
−jωpn

∣∣∣∣∣
2

−N

2

. (8)

Thus, at this point, the optimization problem of minimizing ISL
can be expressed as the minimization of the expression below

2N∑
p=1

∣∣∣∣∣
N∑
n=1

xne
−jωpn

∣∣∣∣∣
2

−N

2

. (9)

Note that the above cost function in (9) is quartic with re-
spect to xn. Therefore, an almost equivalent minimization prob-
lem having a cost function which is quadratic in xn was sug-
gested in [1, 8, 11, 12] as

min
{xn}Nn=1;{ψp}N

p=1

2N∑
p=1

∣∣∣∣∣
N∑
n=1

xne
−jωpn −

√
Ne−jγpn

∣∣∣∣∣
2

. (10)

To solve the constrained obtimization problem above, let

aHp =
[
e−jωp e−j2ωp . . . e−j2Nωp

]
(11)

where (·)H denotes the Hermitian operation. AH below can be
defined as 2N×2N unitary fast Fourier transform (FFT) matrix

AH =
1√
2N


aH1
aH2

...
aH2N

 . (12)

Then, the expression in (10) can be more compactly written as∥∥∥AHz− v
∥∥∥2 (13)

where z =
[
x1 x2 . . . xN 0 0 . . . 0

]T
2N×1

and

v =
1√
2

[
ejγ1 ejγ2 . . . ejγ2N

]T
. (14)

For a given sequence, x, the vector, v, can be found by minimiz-
ing the expression in (13) with respect to {γp}. Let h = AHz
denote the FFT of z. Then, minimization of (13) with respect
to {γp} for a given sequence, x, produces

γn = arg (hp) , p = 1, . . . , 2N. (15)

Similarly, by letting g = Av, minimization of (13) with respect
to sequence, x, for a given v yields

xn = ej arg(gn), n = 1, . . . , N. (16)

By this way, the CAN algorithm [1] minimizes the approx-
imate ISL-related metric in (10) instead of the exact ISL metric
in (9).

3. Genetic Algoritm (GA)
In this study, the exact quartic cost function in (9) is mini-

mized using GA to find a sequence with minimum ISL. GA is
one of the global optimization algorithms designed by taking
inspiration from the natural selection mechanism in biology. In
biology, the most adaptable generations are able to be alive af-
ter the ongoing natural selection mechanism years by years. In
the same way, the most probable solution of an optimization
problem eliminates the alternative solutions after execution of
the GA for that problem. Generally, GAs are used when the
analytic solution of the optimization problem cannot be found
easily. Another advantage of GAs is that they are less likely
to converge to a local minimum. Therefore, GAs are able to
both improve the performance of systems and solve complex
optimization problems [13–19]. The basic concepts relevant to
GAs are explained as follows:

• Population: The set which may include the possible so-
lutions of the problem.

• Individual: Each element in the population set is named
as an individual.

• Generation: The process of reproduction of the individ-
uals which are included in the population.

• Parent: Individuals which are used in the reproduction
process.

• Child: An individual arising from two parents after re-
production process.

• Initialization: The process to create the initial population
of the algorithm.

• Selection: The process of determining the appropriate
parents in order to give a child.

• Crossover: Changing the chromosome of individuals
from generations to generations (see Fig. 1).

Fig. 1. An example of crossover.

• Mutation: A random change which occurs in the chro-
mosome of individuals (see Fig. 2).

Fig. 2. An example of mutation.

4. Numerical Examples
GA is used to find the minimum value of the exact cost

function in (9). Implementation of GA is performed via MAT-
LAB 2017a software using “Global Optimization Toolbox”.



There are many parameters affecting performance of GA and
the optimum values of these parameters are found by experi-
menting. In our simulations, the quartic objective function in
(9) is an input parameter. The population size, maximum num-
ber of generations, crossover and mutation operations explained
in the previous section are also presented as the other inputs. We
decided the population size to be 150 and the maximum gener-
ation number is assigned as 20000. We use both crossover and
mutation operations in order to increase the diversity in the pop-
ulation. 5 % of the population are selected as elite individuals
in each generation. They maintain their chromosomes without
any mutation or crossover.

Simulations were performed by employing two different
initialization sequences. The first initialization sequence x =[
ejϕ1 , . . . , ejϕ2N

]
is formed by selecting {ϕp}Np=1 as inde-

pendent random variables uniformly distributed in [−π, π].
GA was repeated 10 times and CAN was repeated 100 times
when the algorithms were initialized by random sequences.
The average value of the obtained MFs are presented in Ta-
ble 1. Secondly, the algorithms were initialized with Golomb
sequence [7] and the resulting MFs can be seen in Table 2.
Simulations were performed for sequence lengths of N =
9, 25, 32, 64, 100.

Fig. 3. shows the average MF values with respect to se-
quence length for random initialization. It can be understood
from the figure that GA performs better in terms of MF for all
the simulated sequence lengths. Secondly, GA and CAN were
initialized with Golomb sequence. MFs of the resulting de-
signed sequences with respect to sequence length can be seen in
Fig. 4. We can see that when CAN and GA are initialized with
such a sequence having good correlation properties as Golomb,
their performances increase in terms of MF. As opposed to Fig.
3, MFs obtained by CAN and GA are fairly close to each other.
However, MFs of GA are slightly better than CAN for sequence
lengths of 64 and 100.

Correlation levels (in dB) of Golomb sequence and the se-
quences designed by CAN and GA for N = 100 are shown in
Fig. 5, where the correlation level is defined as [1]

Corr. Lev. = 20log10

|rk|
|r0|

, k = −(N − 1), . . . , N − 1. (17)

We can see from Fig. 5 that the lowest correlation levels are
obtained by the GA.

Table 1. MF values for GA, CAN, and Golomb when GA and
CAN were initilized by random sequences.

Algorithms N (sequence length)
9 25 32 64 100

GA 35,14 14,68 13,52 16,99 16,87
CAN 17,78 11,31 11,68 13,80 14,81
Golomb 5,37 8,20 9,18 12,77 15,87

Table 2. MF values for GA, CAN and Golomb when GA and
CAN were initilized by Golomb sequence.

Algorithms N (sequence length)
9 25 32 64 100

GA 38,23 20,33 14,95 47,94 57,10
CAN 38,02 25,01 16,91 46,67 56,47
Golomb 5,37 8,20 9,18 12,77 15,87

Fig. 3. Average MF versus sequence length. GA and CAN were
initialized by random sequences.

Fig. 4. MF versus sequence length. GA and CAN were initial-
ized by Golomb sequence.

5. Conclusions
In this study, we propose to use GA in order to design uni-

modular constant modulus sequences attaining minimum ISL
values. Then, we compare performance of GA against that of
the CAN algorithm in terms of MF. The CAN algorithm is pro-
posed for designing a sequence with good correlation properties
and it minimizes an approximate quadratic ISL-related metric
instead of the exact quartic ISL metric. Therefore, our basic
aim here was to minimize the original quartic metric of ISL us-
ing GA and compare its performance against CAN. Although,
the evaluation time required for termination of CAN is shorter
than GA, GA performs better than CAN in terms of the result-
ing MF. The difference between these two algorithms on mini-
mizing the ISL-related metric in (10) and the exact ISL metric
in (9) become more evident when they are initialized by ran-
dom sequences. In addition, MFs of the sequences designed by
GA are higher than those designed by the CAN algorithm for
larger sequence lengths. These results indicate that sequences
designed by minimizing the exact metric of ISL using GA can
attain higher MFs than those designed by the CAN algorithm.
However, execution time of CAN is shorter than GA.



(a)

(b)

(c)

Fig. 5. Correlation levels (N = 100). (a) Golomb sequence,
(b) Designed CAN sequence, (c) Designed GA sequence.

As future work, we plan to come up with the analytic solu-
tion of the minimization problem in (9) and use the simulation
results obtained by GA in this study as a benchmark.
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