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Abstract
Human or pedestrian detection is an attractive headline

and has been proposed in computer vision and machine
learning fields. Real time detection and low power system
is a critical challenges. Support Vector Machine algorithm
with Histograms of oriented gradients (HOG) feature de-
scriptor is given a high successful result, fast and reliable,
for human detection. Therefore, this paper demonstrates
how to implement HOG feature descriptor with Support
Vector Machine (SVM) using FPGA and presents a report
that includes FPGA’s resource utilization, time consuming,
power consumption and SVM accuracy results.

1. Introduction
Human detection has been important in computer vision to

understanding image and analyses the video. Human detec-
tion is applied to variety applications such as video surveillance
system[1, 2], Pedestrian detection for driver assistance system
[3]and mechanic system for robot [4] and etc. In human detec-
tion system, proper evaluation method is a crucial topic. There
are several techniques has been proposed with high accuracy re-
sults. Rapidly processing and be able to perform real time using
Haar-like and Adaboost algorithm was represent in [5, 6]. There
are an efficiency algorithm using HOG and Support Vector Ma-
chine (SVM) and it was illustrated in [7, 8]. This method has
an accuracy results but the training and testing phase is compli-
cated and consume a time.

In the present, hardware machine learning implementation
research headline are interested and challenging topic. Many
works have been developed SVM on FPGA for human or object
detection applications. A real time high resolution (1920x1080
pixels) pedestrian detection using HOG and SVM classification
was implement on FPGA Xilinx Vertex5 in [9]. The detec-
tion system based on time multiplex method then using multi
scale to detect moving object. SVM hardware is composed of
dot product calculation, memory access controller, intermedi-
ate adder and bias adder. Hardware implementation of human
detection using HOG and SVM was introduced in [10]. They
use modification binary process instead of normalization pro-
cess in HOG. Therefore, multiplication operation was replaced
by addition operations. The result show that the resources was
reduced and possible to implement to low end Xilinx Spartan3.

CoHOG,HOG with a pair of histogram, and SVM was rep-
resented in [11]. To achieve real time pedestrian detection on

embedded, hardware architecture based on FPGA was designed
for CoHOG. The result show that architecture can process on 38
fps with 320x240 pixels. Real time object detection for high res-
olution video (1920x1080 pixels) based on FPGA was proposed
in [12]. HOG feature was simplified with cell based scanning,
simultaneous SVM calculation, using pipeline architecture and
parallelism modules. Video-based pedestrian detection for a
roadside assistance unit was implemented using HOG and SVM
in [13]. The hardware part is personal computer combines with
FPGA and GPU. FPGA provides for HOG descriptor, GPU was
used to run SVM algorithm and personal computer manages a
connection between FPGA and GPU. It is giving a flexible hard-
ware to produces a real-time processing.

According these reviews, this paper is going to implement
Human detection using HOG for feature extraction method with
SVM for classification algorithm in FPGA.

2. Human detection system
2.1. Histograms of oriented gradients (HOG) feature de-
scriptor

The concept of HOG is that distribution of local intensity
gradient or the edge direction (oriented gradient) can be a fea-
ture that is used to characterize an object shape and object ap-
pearance from an image. There are four parts to produce feature
extraction following section below.

2.1.1. Gradient Computation

The first process is to compute the magnitude and the di-
rection of gradient. This is achieved by image filtering opera-
tion. There are several discrete derivative masks can be applied.
However, the simple 2-dimensional sharpening filter known as
Sobel operator which is [-1,0,1] seem as the best solution and
using the larger masks is also decrease classification perfor-
mance. To calculate the point derivative, we use Sobel operator
in (1) and (2).

Gx(x, y) =Mx∗I(x, y) = P (x+ 1, y)− P (x− 1, y) (1)

Gy(x, y) =My∗I(x, y) = P (x, y + 1)− P (x, y − 1) (2)

where Mx = [−1, 0, 1],My = [−1, 0, 1]T
Gx(x, y), Gy(x, y) is gradient value, P(x,y) is illumination
pixel data at I(x,y) position, and Mx,My is Sobel operator.
Next, Equation 3 is applied to find magnitude of gradient.

|G(y, x)| =
√

(Gx(x, y)2 +Gy(x, y)2) (3)



After that, we calculate the direction or orientation of gradient
using formula 4.

θ = tan−1Gy(x, y)

Gx(x, y)
(4)

This process is to produce as emphasize the edge details in im-
age and remove none essential information by applying a sharp-
ening filter operation and prepare for the next operation.

2.1.2. Orientation Binning

This operation generates a histogram of gradient from mag-
nitude and direction of gradient. It accumulates onto spatial re-
gion which is called cell. Cell is usually a rectangle that create
from divide a 64x128 pixels image to 8x8 pixels which size is
enough to be able to represent an interesting feature. It also
creates a histogram bins which is unsigned gradient direction
between 0-180 degrees or signed gradient direction (0-360 de-
gree). The several number of bins and the angle can be used but
in [16] is shown that 9 number of bins over 0-180 degree gives
a highest performance. To produce a 9 bins histogram, [14] is
also shown that using magnitude itself without square or square
root is giving the best result.

2.1.3. Block Normalization

The objective of this process is to remove a variation
that is affect to gradient magnitude such as illumination and
foreground-background contrast. The normalization turn out to
be essential improvement for reject the gradient affect varia-
tions. Instead of scanning every cell to normalize, [14] dedi-
cates that it is not necessary to normalize each histogram of cell
but it can combine a cell as 2x2 cell and then calculate a nor-
malization operation and the next window cell to normalize is
moved by one cell (8 pixels) and then normalization process is
repeated.

2.1.4. HOG Descriptor

This process calculates the final HOG vector for entire im-
age. The final vector is the concatenation of normalization
blocks. There are 105 block of 16x16 block size and each
block has 36 vectors then we will get final vector which has
105 × 36 = 3780 dimensions. The final HOG vector is used
for classification algorithm.

2.2. Support vector machine (SVM)

Support Vector Machine is one of high accuracy supervised
machine learning algorithm and it was first introduced by Cortes
and Vapnik in 1995. The purpose of this method is to sepa-
rate the data to two different classes by a hyper plane for N-
dimensional data. The model has linear classification and can
perform nonlinear classification using kernel trick. Consider
data has two different (+, -), Fig.1 illustrate 2-dimensional fea-
ture using linear line (hyper plane in N-dimension) to separate
different two class. Hyper plane is characterized bywx+b = 0
while b is constant. The dot line is known as boundary and a dis-

tance between two dot lines (
2

||w|| ) is called margin. A data on

a dot line or boundary are called Support Vectors (SVs).
To separate a different class, this method search for the di-

rection of linear line (determined by w) that gives the maximum
margin. Consider as mathematic model, the positive data la-
belled as 1, negative data labelled as -1 then we can classify

Figure 1. An example linear line separates two different class.

class by formula wTx + b > 0, then x is in 1 (positive class)
and wTx+ b 6 0, then x is in -1 (negative class).

The maximum margin is given by maximize
2

||w|| . In other

word, we can minimize ||w|| to find maximum margin. It turn
out this is a quadratic optimization problem with equality con-
straints.Lagrange multiplier was applied to solve this problem.
The final optimization function come up with Equation 5.

max
λ

(

N∑
i=1

λi −
1

2

∑
i

∑
j

λiλjyiyj(xixj)) (5)

Subject to the constraints (6).

N∑
i=1

λiyi = 0 and C > λ > 0 (6)

The constant C is used for adjusting to make the margin large
and gives a small number of margin failures.Additional, The
vector w is optimal solution in linear combination of feature
vector (x) that relates to λi when λi 6= 0 which has a form as
Equation 7.

W =

N∑
i=1

λiyixi (7)

2.3. Sequential minimal optimization

Sequential minimal optimization (SMO) technique, which
is represent by [15] was introduced to reduce a resource for
complexity computation and consuming time. SMO is able
to compute without extra matrix or numerical QP optimiza-
tion step. Instead of numerical QP calculation, SMO breaks the
problems into a series of smallest QP problem which is able to
solve by analytically. Due to the smallest QP problem involves
with two Lagrange multipliers then SMO choose two Lagrange
multiplier for optimize the QP problem. At each iteration, SMO
selects one Lagrange multiplier to join optimization condition
then selects second Lagrange multiplier and find optimal value
for these multipliers. When all Lagrange multiplier satisfy the
optimization condition then the problem has been solved.

To implement SMO technique, we simplify algorithm and
present as pseudo code. Assume we have input as C: regular-
ization parameter, tol: numerical tolerance, iter : iteration time,
and example data (x(1), y(1)), (x(2), y(2)), .., (x(m), y(m)).
The output is λ ∈ Rm : Lagrange multipliers, b: bias for solu-
tion.

Pseudo code SMO simplification:

• Initialize λi = 0, b = 0



• While (counter < iter)

– For i =1,...,m

– Calculate Ei = f(xi)− yi

– If (yiEi < −tol and λi < C) or
(yiEi > tol and λi > 0)

∗ Select J using heuristic random

∗ Calculate Ej = f(xj)− yj
∗ Store old λi
∗ Compute L and H

∗ If (L==H) then continues next i

∗ Compute µ and if (µ > 0) then continue next
i

∗ Compute and clip new value of λj
∗ if (|λj − λoldj | < tol) then continue next i

∗ Determine value of λi
∗ Compute b

∗ Update counter

– End if

• End while loop

2.4. Hardware Implementation Tools

We agree that FPGA has an efficiency as low power con-
sumption parallelism and flexibility configuration by partial re-
configurable function[16]. Unfortunately, there is a disadvan-
tage of FPGA which is consuming a time for designing hard-
ware and developing project. There are Verilog or VHDL which
is a high-level programming language for implementation of
FPGA. However, it is still uncomfortable for who does not un-
derstand in low level design as digital circuit design.

According this reason, High Level Synthesis (HLS) was in-
troduced for hardware design process on FPGA. HLS is known
as the compilation of high level language, which is C or C++,
that moving the digital circuit design to be more abstract. In
other word, it is a compiler for transfer a high-level language
to digital circuit design or HDL. In fact, there are several soft-
ware tools based on HLS that is commercial and open source
[17]. This project is implementing on Xilinx FPGA so we are
focusing on HLS software which is called Vivado HLS [18] that
provided by Xilinx company.

3. Implementation of SVM and HOG with
FPGA

This section consist of the details of data set preparing for
human detection, HOG feature extraction using MATLAB and
implementing SVM classification for FPGA.

3.1. Asset Preparation

The objective of this project is to detect a people from a
footage video such as CCTV camera which is using for secu-
rity or surveillance system in urban city. First step of imple-
mentation we prepare dataset that was collected from [19] and
contains of training dataset (1821 positive images, 800 negative
images) and testing dataset (182 positive images, 197 negative
images).

3.2. HOG Feature Descriptor

The extractHOGFeatures MATLAB function was used to
extract image to HOG feature vector. The output of this function
is HOG feature vector following by defining input argument.
There are various argument function that you can set it such
as Cellsize (Size of HOG cell), Block size (Number of cell in
block), NumBins (Number of orientation histogram bins) etc.
The vector size is depending on Cellsize factor. If we choose
larger Cellsize then the vector size in smaller and if we choose
small Cellsize then the feature vector is larger. However, the
Cellsize is represent a shape of image so if the Cellsize is small
then it turns out that more clearly represent a shape of image.

3.3. Implementation of SMO in Hardware

In term of implementing in FPGA, we have to re-arrange
our code from C++ language style to be more suitable for hard-
ware design. It does not provide all function or command as
general C++ to synthesize as a circuit. Furthermore, it is get-
ting a trade-off between performance algorithm and hardware
cost. The better performance of algorithm is more compensate
hardware cost. There are various possible technique to perform
as a hardware but there are constraints and limitation for design
that we have to follow as:

• In term of hardware c++, we have to think a function in
general c++ as a module which has an input and output.
The size of input and output must be specific and has a
limitation during size and board specification. Then we
have to constraint the input data set size (X) and output
from SMO which has size of output λ ∈ Rm is Lagrange
multipliers and B bias.

• Floating point variable is available to used but it re-
quires a huge number of slice resources in FPGA. Vi-
vado HLS supports float and double variable type with
IEE754 standard compliance which is single precision
32 bits (24 bits fraction, 8 bits exponent) and double pre-
cision 64 bits (53 bits fraction, 11 bits exponent).

• Unable to use global variable and sub function should
not have a return value. Instead of using return value, it
recommends using a passing pointer variable. In addi-
tion, the recursive function does not allow to implement.

• General function such as malloc(), printf(), scanf(),
pow() and etc are not be able to synthesize.

According to those limitation, SMO algorithm must be sat-
isfy these constraints. We have done a design and the explain
critical part and important part following as:

3.3.1. Input and output interface

Our SMO design has input X,Y. Output is Lagrange multi-
plier (λ) and bias (b). Input data X has size 60x36 (60 data set
and each data set has 36 features) and input Y has size 60x1.
The interface, connection with other module in FPGA, of input
X and Y can be various methods. However, the different method
has different hardware size. Output port consist of alpha vector
λ with size is 60 and bias value. The interface of both output
is axi lite because this interface is able to transfer data between
the processor and IPcore module in FPGA.

3.3.2. Data variable type

According to most of data are floating point number that
consume high resources. Instead of consuming a lot of resource



by using floating point, HLS has AP fixed variable that we can
specify the number of bits for floating point number. AP fixed
has a declaring definition as AP fixed<W,I> which W is word
length in bits, I is number of integer bit. For example, if we use
AP fixed<6,3> that means we create data type length 6 bits
word with 3 bits for integer number and 3 bits for floating point
number.

The number of W is trade-off with resources. If we choose
larger number to get more precision data then the resources are
more consumed. In this project, AP fixed<16,8> was applied
because FPGA resources can support and it is acceptable preci-
sion for our dataset.

3.3.3. Memory management

According to input and output data are a vector, look up ta-
ble (LUT) resources in FPGA can be perform as a vector mem-
ory. If we define a variable as an array in HLS then the pro-
gram will synthesize using LUT resource. However, LUT was
also require for other design such as process operation, variable
memory or loop operation. Thus, if we design data using array
variable then the LUT resources was over consumed. In order to
decrease consuming resource, we use Vivado HLS video library
function that is called Memory buffer window.

Memory buffer window is a class that allow you to declare
and manage two-dimensional memory window. User can de-
fine a row and column size and it support all data type. There
is sub function that provide for write and read window buffer
with various way. In this work, Window buffer with size 60x30
was defined for input X data, window size 60x1 for input Y.
After synthesize, it shows that the result of resource used was
decreased comparing with using general array variable.

4. Results
The Zed board Zynq Evaluation and Development Kit was

chosen in order to implement a prototype. Zed board was de-
signed based on xc7z020clg484-1 FPGA from Xilinx. We have
done implementation only linear kernel function. The results
contain of hardware implement results section and SVM per-
formance section.

4.1. Hardware design results

IP core was generated by HLS and synthesize results was
estimated in term of timing performance and resource utiliza-
tion. BRAM interface and AXI lite was applied. However,
the results that represent in next section does not include tech-
niques for reduction a time processing or resource management
because we desired to present the minimum requirement for im-
plementing with SVM.

4.1.1. Consuming time

Time processing for SMO IP core is represented in Table 1.
The default clock timing is 10 ns or 100 MHz in frequency term.
Latency time is a number of clock cycles require for a function
to compute all data value. If hardware design has a loop then it
will calculate time each iteration and get summation. The min
and max might be different because of condition branch in code
design. Interval time is a number of clock cycles require for a
new data is be able to compute. In general hardware, the next
data can compute after last data is finished one clock cycle that
mean interval time is more than latency time one clock cycle.

At 10 ns (100 MHz) clock timing, SMO IP core require

Table 1. Processing time of SMO IP core

Clock Timing (ns) Latency Interval
Min Max Min Max

10 ns 1071905 269755 1071906 2697556

minimum 1071905 clocks or 1.07 ms for processing time and
maximum clock is 269755 or 2.69 ms. According to latency
clock, the interval time is latency clock + 1 for both min and
max requirement. There is a pipeline technique to reduce time
processing of iteration loop. However, It will consumes more
hardware resources.

4.1.2. Resource utilization

The report of resource used was represented by xilinx vi-
vado software. For our SMO IP core was illustrate in Table 2.
The significant resources consist of Block ram (BRAM), Digital
signal processing (DSP48), FIFO (FF) and look up table (LUT).

Table 2. Resource utilization of SMO IP core

Resource Estimation Available Utilization (%)
BRAM 18K 2 280 ∼ 0

DSP48E 19 220 8
FF 14312 106400 13
Look up table (LUT) 19241 53200 36

This report is using a resource based on xc7z020clg484-1
FPGA. LUT was used for 36% due to IPcore has iteration loop
and if-else condition to process a whole data input. FF was used
13% for window memory that provides for HLS video library.
DSP48 is 8% used to produce a mathematics operation such as
adder, multiplication and division. BRAM was applied to write
and read the array variable that we use it for vector data. FPGA
resource can be reduced or increased depend on many factors.
For example, pipeline technique will reduce processing time but
it will increase a resource as a double number. another factor
is if we define a bigger number of data that the output result
will give more accurate but you have to pay with more resource
used. Additional, different data type is also effect to resource
used. In stead of using general floating number, we use fixed
point number that was mention in previous chapter then we are
able to reduce a number of resource used but the data precision
is lower than general floating point.

4.1.3. Power consumption

Power consumption was estimated in synthesize process
and it represent in Table 3. Static power is a power consumed
when FPGA is powered up without running circuit. This power
value is based on FPGA model. Dynamic power is a power
consumed when circuit is running.

Table 3. Power consumption of SMO IP core

On chip power Power estimation (Watt)
Static power 0.129 W
Dynamic power 0.437 W

For SMO IP core, Static power is 0.129 Watt and dynamic
power is 0.437 Watt. Therefore, total power when performing
SMO IP core is 0.566 Watt.



4.2. SVM performance

The experiment of training SVM model was created us-
ing linear kernel function. Data set was separated to two
groups for training and cross validation. We implement
with various C (Slack variable) which has values between
C={2−3, 2−1, ..., 28} in order to find the lowest miss classifi-
cation that will give us highest classification result. The results
were illustrated in Table 4.

Table 4. Training and test results using Linear kernel function

Implementation Training accuracy (%) Test accuracy (%)
Software 85.16 84.17
Hardware 88.52 81.96

In software implementation (general c++), it show that
training accuracy and testing accuracy was 85.16% and 84.17%
respectively. Meanwhile in hardware implementation (C++
in HLS), Training accuracy is 88.52% which was higher than
software implement. However, Testing accuracy in hardware,
which is 81.96%, was lower than software implementation be-
cause of in hardware design we have to drop floating number to
be fixed number which is poorer accuracy.

5. Conclusions
The objective of this paper is to represent an implementa-

tion pattern recognition algorithm in hardware device for em-
bedded application. Therefore, human detection using HOG
feature extraction and Support vector machine (SVM) classifier
are chosen. Sequential minimal optimization (SMO) technique
was applied to be algorithm for solving quadratic programming
problem (QP). In hardware part, FPGA was selected as devel-
oping device because of low power consumption and capable
fast computation by parallelism ability. HLS software was used
for developing tools as c++ compiler and synthesizer to VHDL
code. The results of hardware design implies that FPGA is ca-
pable to be efficiently hardware device for human classification
problem and complexity application especially machine learn-
ing algorithm.
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