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Abstract

The design of analogue fractional-order systems requires

the presence of fractional-order elements (FOEs), capacitive

and/or inductive, featuring fractional order α (0 < α < 1).

As currently FOEs are not available as discrete elements,

suitable RC networks are used to overcome this obstacle.

In this paper we primary propose the transformation of

fractional-order elements to cover the whole span of α by

a reduced number of RC networks or later readily available

discrete FOEs. Using this approach, FOEs can be designed

featuring complementary fractional order β, i.e. β = 1−α.

Analysing the transformation possibilities, we also discuss

the design of fractional capacitance multiplier.

1. Introduction

Fractional-order calculus gains significant attention in the

last decades as it can be applied in various research areas,

e.g. chemistry, medicine, thermodynamics, control etc. [1],

[2]. From the area of electrical engineering, the signal pro-

cessing and generation are the main domains, where even basic

fractional-order filters and oscillators offer new benefits with

regards to their integer-order (classic) counterparts [3].

Assuming ”classic” linear analogue function blocks, the

resistors, capacitors and inductors generally represent the

main discrete elements used for the design. Once design-

ing fractional-order systems, the capacitive and inductive

fractional-order elements (FOEs), also called Constant Phase

Elements (CPEs) or Elements with Fractional Impedance (EFIs)

are required. Similarly as in classic circuit design the capac-

itors are preferred to inductors, the main attention is paid to

capacitive FOEs featuring fractional order α (0 < α < 1) and

pseudo-capacitance Cα. The first attempts of direct implemen-

tation of capacitive FOEs as discrete elements can be found in

the literature. These discrete FOEs are based on various design

approaches and materials, such as poly-vinylidene fluoride [4],

ionic polymer metal composites [5], polymer-carbon nanotubes

[6], structures with distributed parameters [7] etc., however still
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are not readily available and the fractional feature is valid in a

limited frequency range. Therefore, to approximately emulate

capacitive FOE, a suitable RC network is designed, whereas an

overview of possible structures can be found in [8]. Although,

there are techniques to determine the values of the resistors and

capacitors in such networks, according to the required accuracy

of the approximation, relatively high number of resistors and

capacitors with high ratio (even three decades [8]) in values

is required. Once adjustability of function blocks’ parameters

should also be present, it is required to switch between several

RC networks, or between discrete FOEs in the future, as any

change in parameters requires another FOE with different order

α and/or pseudo-capacitance Cα.

With the aim to reduce the number of required RC net-

works, and even discrete FOEs in the future designs, we discuss

the transformation technique to obtain mainly complementary

fractional orders. Based on that, the number of the required

RC networks (or FOEs) can be halved. Furthermore as it will

be shown, not only the complementary fractional orders can be

achieved through the transformation, but also capacitive FOEs

with adjusted pseudo-capacitances.

2. Fractional-order elements

The fractional-order element (FOE), most commonly un-

derstood as fractional-order (or fractional) capacitor Cα, is de-

scribed by its impedance:

ZCα =
1

ωα · Cα

exp
(

−jα
π

2

)

, (1)

whereas 0 < α < 1 is the fractional order and Cα, expressed

in [F/s1−α], is the pseudo-capacitance, respectively. According

to (1), the phase shift between the cross voltage and through

current of a fractional capacitor is −απ
2

and is constant in the

whole frequency range.

At a specific frequency ω0, using [8] an equivalent capaci-

tance C (in Farads) featuring the same impedance as a fractional

capacitor can be determined:

C =
Cα

ω1−α
0

, (2)

whereas ω0 mostly defines the central frequency of the fre-

quency range, where the fractional feature of the FOE (i.e. the

phase is understood to be constant) is present.



3. Transformation of FOEs

A significant area of classic analogue circuit design is de-

voted to the design of synthetic inductors or also referred to as

inductor simulators as they enable to omit the discrete induc-

tors in the circuit design. For this sake, the gyrators are used

that generally transform the capacitive load to a lossy or loss-

less inductance. A variety of such impedance converters can

be found in the open literature, where the authors use different

types of active elements to design grounded or floating lossy or

loss-less inductance simulators [9]-[12]. Based on the this ap-

proach, not only synthetic inductors but also e.g. the frequency

dependent negative resistors (FDNRs) are described and used in

analogue circuit design [12]-[14].

The idea of converting the impedance can also be advanta-

geously applied to the area of fractional-order elements. Let us

assume a general impedance converter as shown in Fig. 3 that

contains three admittances Y1, Y2 and Y3 as passive elements

and a network of generally arbitrary types of active elements.

Let the input impedance ZIN of this general impedance con-

verter be determined as:

ZIN =
Y1

Y2Y3

. (3)

Selecting the specific type (i.e. resistor, capacitor and/or

capacitive fractional-order element with the fractional order α)

of the individual admittances Y1, Y2 and Y3, the capacitive

FOE with complementary order can be designed if Y1 = sαCα,

Y2 = sC, Y3 = G, since the input impedance of the impedance

converter will be described as:

ZIN (s) =
1

sβCβ

, (4)

where β = 1 − α is the fractional order of the new capacitive

FOE with its pseudo-capacitance Cβ = (CG)/Cα.

The fact of obtaining FOEs with fractional order being

complementary (i.e. β) to the original fractional order (i.e. α)

of the assumed capacitive FOE may result in a significant re-

duction of discrete FOEs being required for the design, mainly

in case of implementing the fractional function blocks as inte-

grated circuits that should offer sufficient tunability and adjusta-

bility.

Selecting Y1 = G1, Y2 = sαCα, Y3 = G3, the impedance

converter can be also used as fractional capacitor multiplier as

the input impedance is:

ZIN (s) =
1

sαCα

· k, (5)

where k = G1/G3 is the pseudo-capacitance multiplier and it

can be evident that the fractional order α remains unchanged.

From (4) and (5) it is clear that the required fractional order

and/or the value of the pseudo-capacitance can be adjusted by

properly selecting the parameters of the passive elements. Also

notice that in case of impedance converter being used to obtain

a fractional-order element with complementary fractional order

Figure 1. General view on impedance converter.

and also in the case of pseudo-capacitance multiplier the general

admittance Y3 has the character of a conductor. Hence, for the

design of the impedance converter the operational transconduc-

tance amplifier (OTA) defined with its adjustable transconduc-

tance gm can be advantageously used as it offers the possibility

of electronic adjustablity of the pseudo-capacitance of the final

fractional-order element.

4. Implementation example

To verify the theory of impedance conversion of fractional-

order elements, we analyse the performance of the impedance

converter as described below. For the implementation, one cur-

rent conveyor and one operational transcoductance amplifier as

active elements are used.

4.1. Active elements

The current conveyors represent a wide group of active el-

ements, where an comprehensive overview can be found e.g.

in [15]. For our purpose we use probably the most frequently

discussed type, the second generation current conveyor CCII

(Fig. 2(a)), whose behaviour is defined by the following set of

equations:

vX = vY , iY = 0, iZ = iX . (6)

To follow the idea of enabling also the electronic controlla-

bility as described in the section above, the operational transco-

ductance amplifier (OTA) is advantageously used in the design

of the impedance converter as the second active element with

the behaviour simply described as:

iOUT = gm(v+ − v
−
), (7)

where the transconductance gm can be most commonly adjusted

by an external dc current ISET as shown in Fig. 2(b).

4.2. General impedance converter

Using the selected types of active elements, the impedance

converter still using general admittances Y1 and Y2 is shown in

Fig. 3. The input impedance of this circuit can be determined

as:

ZIN =
Y1

Y2 · gm
, (8)

and hence from the formal point of view fully corresponds to

(3), where Y3 = gm. Selecting the type of the admittances

Y1 and Y2 according to the cases as described in the section

above, the grounded fractional capacitor with the order α or β
(β = 1−α) and adjustable pseudo-capacinace can be designed,

see Fig. 4, where the final impedance converter solutions with

specific types of passive elements are shown.

(a) (b)

Figure 2. Schematic symbol of (a) second generation current

conveyor (CCII) and (b) operational transconductance amplifier

(OTA)



Figure 3. General impedance converter using CCII and OTA

(a) (b)

Figure 4. Final solution of the impedance converter (a) to ob-

tain FOE with complementary fractional order β (b) operating

as pseudo-capacitance multiplier.

5. Performance analysis and simulations

The transformation of FOEs within the cases discussed in

Section 3 is analysed. For this purpose, using the approach

described in [8] the RC network approximating the capacitive

FOE with fractional order α = 0.2, and at central frequency

f0 = 1 kHz featuring equivalent capacitance 1 nF, i.e. hav-

ing pseudo-capacitance Cα = 1.1 µFs−0.8, is used and de-

signed according to Cauer I topology as shown in Fig. 5. The

values of the passive elements in this RC network are as fol-

lows: R0 = 100.3 kΩ, R1 = 63.4 kΩ, R2 = 59.2 kΩ,

R3 = 55.8 kΩ, R4 = 56.7 kΩ, R5 = 63.9 kΩ, C1 = 200.7 pF,

C2 = 1.3 nF, C3 = 3.8 nF, C4 = 9.2 nF, and C5 = 23.9 nF

[8]. Note that the ratio between the maximum and minimum

vales of resistors is 1.79, while for capacitors the corresponding

value is 119.

The module and phase response of input impedance of the

FOE using the Cauer I topology is shown in Fig. 6. As the

assumed fractional order of the FOE is α = 0.2, the FOE is ex-

pected to have the constant phase of −18 deg. This presumption

is proved by the phase response as shown in Fig. 6(b).

To design a FOE with the fractional order 0.8 featuring an

equivalent capacitance of 1 nF at f0 = 1 kHz, the RC network

from Fig. 5 can be used again. However, according to [8] the

values of the resistors R0 and R5 from the Cauer I RC network

are from the range of MΩ and furthermore, the ratio between

the maximum and minimum value of resistors is 3887, which

can be seen as disadvantageous.

Using the impedance converter, the original FOE from

Fig. 5 featuring α = 0.2 and equivalent capacitance of 1 nF at

f0 = 1 kHz, i.e. |Z| = 159.2 kΩ and Cα = 1.1 µFs−0.8 can be

easily transformed. Using (2), for β = 1− α = 0.8 and equiv-

alent capacitance of 1 nF at f0 = 1 kHz the pseudo-capacitance

Cβ can be determined to be 5.75 nFs−0.2. Assuming the fi-

Figure 5. RC network for FOE emulation using Cauer I topol-

ogy [8].

10
1

10
2

10
3

10
4

10
5

Frequency [Hz]

10
4

10
5

10
6

|Z
IN

| 
[

]

(a)

10
1

10
2

10
3

10
4

10
5

Frequency [Hz]

-20

-15

-10

-5

a
rg

(Z
IN

) 
[d

e
g
]

(b)

Figure 6. (a) Module and (b) phase response of the ”original”

FOE from Fig. 5 for α = 0.2, Cα = 1.1 µFs−0.8.

nal circuit of the impedance converter as shown in Fig. 4(a),

using the original FOE with fractional order α = 0.2, and set-

ting C = 200 pF and G = gm = 31.6 µS a grounded frac-

tional capacitor featuring fractional order β = 0.8 and pseudo-

capacitance Cβ = 5.75 nFs−0.2 is obtained. In Fig. 7, the mod-

ule and phase response obtained using the OrCAD PSpice sim-

ulator are shown, whereas the active elements were emulated

using UCC-N1B integrated circuit [16]. Changing the transcon-

ductance gm the pseudo-capacitance Cβ of the fractional capac-

itor can be adjusted without affecting the fractional-order β as

it can be seen from Fig. 7. For the selected values of gm =
{15.7, 31.6, 63.3} µS, the value of the pseudo-capacitance

Cβ is {2.88, 5.75, 11.5} nFs−0.2, which according to (2) cor-

responds to equivalent capacitance of {0.5, 1, 2} nF at fre-

quency f0 = 1 kHz. The ratio between the maximum and min-

imum values of resistors and capacitors remains the same as it

is in case of the original FOE.

The performance of the impedance converter from Fig. 4(b)

that operates as pseudo-capacitance multiplier has been also

analysed. Using the original FOE from Fig. 5 with fractional

order α = 0.2 and selecting R = 31.6 kΩ (G = 31.6 µS),

for gm = {15.7, 31.6, 63.3} µS the multiplication factor k
is {2, 1, 0.5} and the final (transformed) pseudo-capacitance

CαT will be {0.55, 1.1, 2.2} µFs−0.8. Using (2) the equiv-

alent capacitance of transformed fractional capacitor is again

{0.5, 1, 2} nF. The input impedance module and phase re-

sponses for the selected values of gm are shown in Fig. 8.

From Fig. 8(a) it can be seen that changing gm also the mod-

ule changes, whereas the phase (Fig. 8(b)) is nearly constant as

the phase shift of the original FOE with α = 0.2 in the same

frequency range.

6. Conclusion

In the paper we proposed the utilization of general

impedance converters primarily for the design of capacitive

FOEs with fractional order being complementary to the original

FOE with the aim to reduce the number of FOEs being required
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Figure 7. (a) Module and (b) phase response of the FOE with complementary fractional order β = 1− α = 0.8.
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Figure 8. (a) Module and (b) phase response of the impedance converter operating as pseudo-capacitance multiplier of a FOE with

α = 0.2.

in future circuit designs. Using a simple impedance converter

employing single second generation current conveyor and sin-

gle operational transcoductance amplifier, we have shown effi-

cient transformation of a capacitive FOE with fractional order

of 0.2 to a capacitive FOE with fractional order of 0.8. Further-

more, the usage of OTA in the impedance converter presents the

possibility of adjusting the pseudo-capacitance of the fractional

capacitor.
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