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Abstract 
  

New areas such as Internet of Things (IoT), smart home 

technologies and wearable technologies have brought 

security problems together. In order for these technologies to 

be implemented in the future, attention should be paid to the 

confidentiality of the produced data. The best way to achieve 

this is to use cryptography. This article is about hardware 

implementation of BORON, which is an energy efficient 

crypto algorithm with small footprint, on a Field 

Programmable Gate Array (FPGA) using hardware 

description language. The Diffie-Hellman key exchange 

protocol for secret key sharing is implemented using the 

Montgomery Modular Multiplier written in VHDL 

language. After testing that the hardware is fully functional, 

the software is designed with the C language on the ARM 

processor to control the entire system. Finally, the output of 

the hardware and software-designed Boron code on FPGA is 

printed on the screen via serial communication protocol 

(UART).  
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1. Introduction 
  

The emerging fields such as Internet of Things (IOT), smart 

home technology and wearable technology will play a very 

important role in the future to facilitate human life [5]. Thanks 

to these new technologies, people will be constantly connected 

devices they use regularly, too much data will be collected from 

the sensor networks and analysis of this data will be made to 

solve problems in daily life. At the same time, this situation 

means that each individual's personal information must be in the 

same environment and it can be accessed by everyone in certain 

ways. To make every device smart and connect them to internet 

causes external threats like information leakage, personal data 

capture and Distributed Denial of Service (DDoS) attacks [6]. 

The security measures of the devices against all possible types 

of attacks must be taken. In order for these technologies to be 

implemented in the future, attention should be paid to the 

confidentiality of data. In the past, many passwords have been 

designed to secure devices and protect personal data. AES [1] 

and Triple DES [2] are commonly used ciphers. As of now, 

there is no attack that could be successful against these ciphers 

in a reasonable amount of time. 

These old ciphers have large hardware occupancy and high 

power consumption. It has become impossible to implement 

them in embedded systems with limited resources. All of these 

constraints led to the emergence of the area of Lightweight 

Cryptography [3]. Lightweight Cryptography aims to design 

encryption algorithms that have a robust design, takes up less 

space and have low power consumption with fewer than 2200 

gate equivalent (GE) numbers [4]. 

In this project, we aim to design a cryptographic device with 

minimum space and minimum power consumption that can be 

used in low-scale embedded systems. When the lightweight 

crypto algorithms in the literature are examined, Boron is 

selected as most appropriate algorithm. Then the Boron crypto 

algorithm is implemented on a FPGA using Verilog language. 

The Diffie-Hellman key exchange protocol for secret key 

sharing is implemented using the Montgomery Modular 

Multiplier written in VHDL language. After testing that the 

hardware is fully functional, the software is designed with C 

language on ARM microprocessor to control the entire system. 

Finally, hardware and software-designed Boron cryptosystem is 

implemented on the Field Programmable Gate Arrays (FPGAs) 

and outputs are printed on the screen via serial communication 

protocol (UART). 

  

2. The Lightweight Crypto Algorithm BORON 
  

In this section, the properties of the BORON algorithm and 

data encryption algorithms are explained. 

  

2.1. Properties 
  

BORON cryptographic algorithm is a lightweight block 

cipher which have substitution-permutation network (SPN) 

structure [7]. It runs faster than other Feistel based ciphers. 

BORON consists of a round function that repeats 25 times and 

this feature of Boron makes it cryptographically strong. Having 

a non-linear layer in the substitution-permutation network 

(SPN) has resulted in good results in the active S_box count, 

making it secure against standard cryptographic attacks such as 

linear and differential cryptanalysis.  

 
  

Fig. 1. Block diagram of a BORON cipher [7] 



Key generation is based on key generation of PRESENT 

encryption algorithm [8]. The BORON encryption algorithm 

supports an 80-bit or 128-bit encryption text length, with a 64-

bit plain text or encrypted text block length. An overview of the 

encryption algorithm is given in Figure 1. More detailed 

specifications will be given in the following sections.   

 

2.2. Round Function 
  

BORON cipher has a round function that repeats itself 25 

times. Round Function has key addition, nonlinear permutation 

and linear layer as shown in Figure 2. The key addition layer 

performs bit insertion at the bit level. The non-linear layer is the 

S_box layer. It consists of 16 parallel-operated s_boxes with 4-

bit input and output. The linear layer consists of block shuffle, 

round permutation and XOR operations, respectively.  

 

 
  

Fig. 2. Round Function Structure[9] 

  

2.2.1. Add_Round_key Layer 
  

This layer performs a simple XOR operation between the 

current state and the least significant 64 bits of the round key. 

The key changes on each turn. Detailed information on key 

production is given in Section 2.3. 

  

2.2.2. S_Box Layer 
  

The S_Box layer consists of a total of 16 s_boxes running in 

parallel with each other producing a 4 bit output from the 4 bit 

input. The output of each value of the S_Box layer of the 

BORON algorithm is given in Table 1 as hexadecimal. 

  

Table 1. S_box table 
  

X 0 1 2 3 4 5 6 7 

S(x) E 4 B 1 7 9 C A 

X 8 9 A B C D E F 

S(x) D 2 0 F 8 5 3 6 

  

2.2.3. Permutation_Layer  
  

The Permutation_Layer has 3 intermediate layers. 

  

2.2.3.1 Block_Shuffle 
  

The Block_Shuffle layer cyclically shifts the 16-bit input by 

8 bits to produce 16-bit output. Block blending is shown in 

Table 2. The 16-bit input is divided into 4-bit blocks first. The 

least significant 4-bit block (j = 0) replaces the third least 

significant block by shifting 8 bits to the left. In the same way, 

the second least significant block (j = 1) shifts 8 bits to the left, 

replacing the most significant block.  

  

Table 2. 8 bit left cyclic shift in 16 bit blocks 
  

j 0 1 2 3 

B(j) 2 3 0 1 

  

2.2.3.2 Round_Permutation 
  

The 64-bit input of the Round Permutation is first divided 

into four 16-bit blocks, and cyclic shifting to the left is applied 

to these 4 blocks in the direction of Table 3. 

  

Table 3. Round_Permutation left cyclic shift values 
  

j 0 1 2 3 

r(j) 1 4 7 9 

  

2.2.3.3 XOR_Operation Layer 
  

The XOR Operation Layer performs a simple XOR operation 

between 16-bit blocks. According to the following equation, 

four 16-bit output (W'3 W'2 W'1 W'0) is a layer that produces a 

total of 64 bits of output. 

 

W'3 = (W3 ^ W2 ^ W0) (1) 

W'2 = (W2 ^ W0) (2) 

W'1= (W3 ^ W1)  (3) 

W'0 = (W3 ^ W1 ^ W0) (4) 

 

" ' " represents outputs, "W" represents 16-bit inputs, and " ^ " 

indicates XOR operation. 

  

2.3. Key_Schedule (Key Generation) 
  

BORON key generation is very similar to PRESENT. An 

attack against PRESENT key production has not been published 

until now. It uses 26 64-bit intermediate keys for encryption. 

The generation of these keys is performed by inserting a 128 bit 

or 80 bit user defined master key into the key generation 

function and extracting the least significant 64 bits of the output. 

The generated keys are included in the round function, 

respectively. It should be noted here that the first round key is 

not produced and the least significant 64 bits of the user-defined 

master key are used. Therefore, the first produced key of the key 

generation function will be included in the second round. As a 

result, the BORON satisfies the first key (K0) of the 26 keys 

(K0-K25) necessary for encryption from the last 64 bits of the 

master key and other 25 keys from the key generation function. 

In this study, key generation function is used from only 80 bit 

master key. 

The key update of the Boron is performed according to the 

following algorithm. First the Key_Register is shifted cyclically 

to the left by 13 bits. Then, the most meaningless 4 bits of this 

key record are updated in the S_box. Finally, 4 bits between the 

59th and 63rd bits of this key register are updated by XORing 

with the 4 bit binary number of that number. 

 

KEY_Register = K79K78...K2K1K0  

round_key = K63K62...K2K1K0 



1. KEY_Register <<<13 

2. [K3K2K1K0] ←S [K3K2K1K0].  

3. [K63K62K61K60K59] ← [K63K62K61K60K59] ^ RCi 

 

<<< n expresses leftward cyclic shift of n bits and RCi expresses 

the value of the round  counter of the i. tour. 

  

3. Hardware Design 
  

The implementation of the BORON encryption algorithm 

was first started by designing the hardware in Xilinx Vivado 

2017.1 program using the Verilog hardware description 

language. The hardware in the algorithm are collected under the 

boron module. 

After the design of the cipher hardware, Montgomery 

modular multiplier was designed in VHDL language to be used 

in secure key sharing. 

All the designed hardware were packaged and connected 

with the ARM processor using the AXI infrastructure.  

After the hardware design phase was completed, software 

was designed on the embedded ARM microprocessor in the 

FPGA to control these hardware and system. 

 

3.1. Boron Module 
 

The Boron module has 64-bit plaintext input. The main input 

key length is 80-bit selected. The Boron module is designed to 

perform both encryption and decryption in itself. The 1-bit 

enc_dec entry specifies whether the module will encrypt or 

decrypt the input text. The start and done signals used in the 

Boron module are used to communicate with the 

microprocessor. 

 

 
  

Fig. 3. Boron module RTL schematic 

  

The Boron consists of Round function that repeats itself 25 

times. At the same time key production has a repetitive 

structure. Thanks to the CU finite state machine in it, the Boron 

module is able to perform its functions in a synchronous 

manner. It is preferred that all keys be generated and recorded 

once instead of generating all keys repeatedly in encryption-

decryption process in the module. Although this draws the 

disadvantage of using a lot of space in the first stage, it is 

thought that the absence of the key generation process 

repeatedly, when considering a continuously working system, 

would seriously reduce the total working time, thus minimizing 

power consumption. 
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Fig. 4. Boron module working diagram 

  

 
  

Fig. 5. Boron module behavioural simulation result  

  

3.1.1. CU Module 
  

A finite state machine is designed to manage the Boron 

module. Five different working states are determined: IDLE, 

Key_Generation, Enc, Round25, Dec.  

 

Load P_reg

Load Master_Key_reg

IDLE

start

0

1

Key_Generation

counter<24
counter =

counter+1
evet

enc_dec 1 Enc

counter<24
counter =

counter+1
evet

counter=0

hayır

Round_25

Dec

counter<24
counter =

counter+1

counter=0

hayır

0

evet

done=1

hayır

 
  

Fig. 6. CU module working diagram 

  



In the state of IDLE, the processor is expected to wait until 

the start signal. If the start signal arrives, it goes into the 

Key_Generation state and remains in this state until the counter 

reaches 24 (starting from 0) to produce the keys needed for our 

Round function. When the counter is set to 24, Enc or Dec is 

toggled by looking at enc_dec. Enc status is the encryption 

process, and Dec is the decryption process. Holding a counter 

holds 24 rounds in this case, and when the counter is 24, it goes 

Round25. The Boron module now performs its task and returns 

to the IDLE state by pulling the done output high. When doing 

this, the counter is reset and ready for new operations. 
 

 
  

Fig. 7. CU module RTL schematic 

  

3.1.2. Add_round_key Module 
  

The Add_round_key module performs a simple XOR 

operation between the current state and the least significant 64 

bits of the round key. 

 

 
  

Fig. 8. Add_round_key module RTL schematic 

  

3.1.3. Round_enc  Module 
  

The Boron module has a Round function that repeats itself 

25 times. The non-linear permutation (S_Box_layer) and the 

linear layer (Permutation_Layer) are implemented in the Round 

module while the key addition part of the round function is 

performed in the Add_round_key module. 

 

 
  

Fig. 9. Round_enc module RTL schematic 

  

3.1.3.1 S_Box_Layer Module 
  

The S_Box module consists of a total of 16 s_boxes 

operating in parallel with each other producing a 4-bit output 

from a 4-bit input. The S_box modules perform a non-linear 

cipher change according to the values given in Table 1. When 

the module is designed, no reduction is made to the function to 

be implemented, inputs and outputs are written directly in the 

switch-case structure. 

 

3.1.3.2 Permutation _Layer Module 
  

The Permutation_Layer module has 3 intermediate modules 

connected in series. Combines the functions given in Section 

2.2.3.  

 

 
  

Fig. 10. Permutation_Layer module RTL schematic 

  

3.1.4. Round_dec  Module 
  

Round_dec designed as the opposite of the module. This 

module will be used for decryption. 

 

 
  

Fig. 11. Round_dec module RTL schematic 

  

3.1.5. key_generator Module 
  

The Boron module needs 26 intermediate keys. In this 

design, the intermediate keys are stored in the 2080 (26 * 80) -

bit Key_Register. After the user-defined 80-bit key is inserted 

into the key_generator module and a set of mathematical 

operations are performed, the generated intermediate key is 

registered to the most significant 80 bits of the Key_Register. In 

each round, the Key_Register is shifted to the right by 80 bits to 

ensure that the newly created key remains at the most significant 

80 bits. In total, at the end of 26 rounds, the first generated K0 

key is placed in the least significant 80 bits of the Key_Register 

[79:0], and the last generated key K25 is placed in the most 

significant 80 bits of Key_Register [2079:2000]. If the 

Add_round_key module is to be used for encryption, it uses 

those keys that are generated by shifting the Key_Register to 80 

bits to the left of each round starting from the least significant 

80 bits (K0) of the Key_Register. If it is to be used for 

decryption, it uses the keys generated by scrolling 80 bits right 

on each round starting from the most significant 80 bits (K25) of 

Key_Register. 

 

 
  

Fig. 12. key_generator module RTL schematic 



3.2. Block Design 
 

A custom AXI IP block was created in Vivado and the Boron 

module was packaged in Boron IP with integrated Verilog 

codes. The same process was also done for the Montgomery 

modular multiplier written in VHDL language. The Zynq-7000 

hardware platform is also included in the block design, so the 

AXI communication protocol connections between the Boron 

IP, Montgomery IP and the ARM processor have been made 

automatically by the program. In this project, the Zynq-7000 

platform's ARM microprocessor system is used to control the 

Boron cryptographic hardware along with the C code written for 

the microprocessor. 

 

 
  

Fig. 13. Block design of hardware design 

  

4. Software Design 
  

A microprocessor is used to control the encryption / 

decryption equipment of the Boron and to provide inter-

hardware data flow. Instead of embedding MicroBlaze provided 

by Xilinx on the FPGA, the Zynboard ARM processor, which is 

already available in hardware, is preferred. This avoids 

unnecessary space usage on the FPGA for the processor. With 

the C code written in the SDK interface, it is said to the Boron 

module that will input text, key, healing or decode. Initially 

reset will reset the Boron module registers. Inputs with the start 

sign are transferred to the module. The start sign is pulled to low 

level after a certain period of time so that the module does not 

continue its operations repeatedly. When the Boron module 

fulfills its tasks, it writes the output it produces to the terminal 

via UART communication.  

Firstly encryption of a text is performed according to the 

code is written. The result is stored in registers. Then, the 

encrypted text is transferred the module again and this time the 

decryption is performed. If the resulting text overlaps the input 

text at the beginning, it prints to the terminal via the UART 

where the design is successfully performed. After testing that the 

encryption decryption works correctly, Montgomery custom IP 

is used to make key share private.  

 

 
Fig. 14. Outputs of design in SDK interface 

6. Conclusions 
  

In this article, it is aimed to design a lightweight crypto 

hardware with low power consumption for low-scale embedded 

systems. Since the design is more efficient in terms of both 

power consumption and area, the Boron encryption algorithm is 

preferred. The crypto algorithm has been realized with a 

software hardware platform implemented on the FPGA along 

with the ARM processor.  

Problems arise between the communication between the 

ARM processor and the Boron hardware, and the problem is 

solved by looking at the simulation output of the Boron 

hardware after synthesis. 

The Boron crypto module has 2399 slots on the FPGA along 

with encryption decryption operations. Compared to popular 

encryption algorithms such as AES, these results achieve the 

targeted low floor space and low power consumption in the 

designed hardware. 

It has been determined that improvements can be made to 

design a more sophisticated system by investigating how 

precautions can be taken against potential side channel attacks 

in advanced studies. 

 

 
 

Fig. 15. Utilization report of our design 
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