
Hardware/Software Co-Design of a Lightweight Crypto Algorithm BORON on

an FPGA

Burak Acar and Berna Ors

 Istanbul Technical University, Turkey

burakacaritu@gmail.com, Siddika.Ors@itu.edu.tr

Abstract

New areas such as Internet of Things (IoT), smart home

technologies and wearable technologies have brought

security problems together. In order for these technologies to

be implemented in the future, attention should be paid to the

confidentiality of the produced data. The best way to achieve

this is to use cryptography. This article is about hardware

implementation of BORON, which is an energy efficient

crypto algorithm with small footprint, on a Field

Programmable Gate Array (FPGA) using hardware

description language. The Diffie-Hellman key exchange

protocol for secret key sharing is implemented using the

Montgomery Modular Multiplier written in VHDL

language. After testing that the hardware is fully functional,

the software is designed with the C language on the ARM

processor to control the entire system. Finally, the output of

the hardware and software-designed Boron code on FPGA is

printed on the screen via serial communication protocol

(UART).

Keywords: IoT, Lightweight Cryptography, BORON, FPGA

1. Introduction

The emerging fields such as Internet of Things (IOT), smart

home technology and wearable technology will play a very

important role in the future to facilitate human life [5]. Thanks

to these new technologies, people will be constantly connected

devices they use regularly, too much data will be collected from

the sensor networks and analysis of this data will be made to

solve problems in daily life. At the same time, this situation

means that each individual's personal information must be in the

same environment and it can be accessed by everyone in certain

ways. To make every device smart and connect them to internet

causes external threats like information leakage, personal data

capture and Distributed Denial of Service (DDoS) attacks [6].

The security measures of the devices against all possible types

of attacks must be taken. In order for these technologies to be

implemented in the future, attention should be paid to the

confidentiality of data. In the past, many passwords have been

designed to secure devices and protect personal data. AES [1]

and Triple DES [2] are commonly used ciphers. As of now,

there is no attack that could be successful against these ciphers

in a reasonable amount of time.

These old ciphers have large hardware occupancy and high

power consumption. It has become impossible to implement

them in embedded systems with limited resources. All of these

constraints led to the emergence of the area of Lightweight

Cryptography [3]. Lightweight Cryptography aims to design

encryption algorithms that have a robust design, takes up less

space and have low power consumption with fewer than 2200

gate equivalent (GE) numbers [4].

In this project, we aim to design a cryptographic device with

minimum space and minimum power consumption that can be

used in low-scale embedded systems. When the lightweight

crypto algorithms in the literature are examined, Boron is

selected as most appropriate algorithm. Then the Boron crypto

algorithm is implemented on a FPGA using Verilog language.

The Diffie-Hellman key exchange protocol for secret key

sharing is implemented using the Montgomery Modular

Multiplier written in VHDL language. After testing that the

hardware is fully functional, the software is designed with C

language on ARM microprocessor to control the entire system.

Finally, hardware and software-designed Boron cryptosystem is

implemented on the Field Programmable Gate Arrays (FPGAs)

and outputs are printed on the screen via serial communication

protocol (UART).

2. The Lightweight Crypto Algorithm BORON

In this section, the properties of the BORON algorithm and

data encryption algorithms are explained.

2.1. Properties

BORON cryptographic algorithm is a lightweight block

cipher which have substitution-permutation network (SPN)

structure [7]. It runs faster than other Feistel based ciphers.

BORON consists of a round function that repeats 25 times and

this feature of Boron makes it cryptographically strong. Having

a non-linear layer in the substitution-permutation network

(SPN) has resulted in good results in the active S_box count,

making it secure against standard cryptographic attacks such as

linear and differential cryptanalysis.

Fig. 1. Block diagram of a BORON cipher [7]

Key generation is based on key generation of PRESENT

encryption algorithm [8]. The BORON encryption algorithm

supports an 80-bit or 128-bit encryption text length, with a 64-

bit plain text or encrypted text block length. An overview of the

encryption algorithm is given in Figure 1. More detailed

specifications will be given in the following sections.

2.2. Round Function

BORON cipher has a round function that repeats itself 25

times. Round Function has key addition, nonlinear permutation

and linear layer as shown in Figure 2. The key addition layer

performs bit insertion at the bit level. The non-linear layer is the

S_box layer. It consists of 16 parallel-operated s_boxes with 4-

bit input and output. The linear layer consists of block shuffle,

round permutation and XOR operations, respectively.

Fig. 2. Round Function Structure[9]

2.2.1. Add_Round_key Layer

This layer performs a simple XOR operation between the

current state and the least significant 64 bits of the round key.

The key changes on each turn. Detailed information on key

production is given in Section 2.3.

2.2.2. S_Box Layer

The S_Box layer consists of a total of 16 s_boxes running in

parallel with each other producing a 4 bit output from the 4 bit

input. The output of each value of the S_Box layer of the

BORON algorithm is given in Table 1 as hexadecimal.

Table 1. S_box table

X 0 1 2 3 4 5 6 7

S(x) E 4 B 1 7 9 C A

X 8 9 A B C D E F

S(x) D 2 0 F 8 5 3 6

2.2.3. Permutation_Layer

The Permutation_Layer has 3 intermediate layers.

2.2.3.1 Block_Shuffle

The Block_Shuffle layer cyclically shifts the 16-bit input by

8 bits to produce 16-bit output. Block blending is shown in

Table 2. The 16-bit input is divided into 4-bit blocks first. The

least significant 4-bit block (j = 0) replaces the third least

significant block by shifting 8 bits to the left. In the same way,

the second least significant block (j = 1) shifts 8 bits to the left,

replacing the most significant block.

Table 2. 8 bit left cyclic shift in 16 bit blocks

j 0 1 2 3

B(j) 2 3 0 1

2.2.3.2 Round_Permutation

The 64-bit input of the Round Permutation is first divided

into four 16-bit blocks, and cyclic shifting to the left is applied

to these 4 blocks in the direction of Table 3.

Table 3. Round_Permutation left cyclic shift values

j 0 1 2 3

r(j) 1 4 7 9

2.2.3.3 XOR_Operation Layer

The XOR Operation Layer performs a simple XOR operation

between 16-bit blocks. According to the following equation,

four 16-bit output (W'3 W'2 W'1 W'0) is a layer that produces a

total of 64 bits of output.

W'3 = (W3 ^ W2 ^ W0) (1)

W'2 = (W2 ^ W0) (2)

W'1= (W3 ^ W1) (3)

W'0 = (W3 ^ W1 ^ W0) (4)

" ' " represents outputs, "W" represents 16-bit inputs, and " ^ "

indicates XOR operation.

2.3. Key_Schedule (Key Generation)

BORON key generation is very similar to PRESENT. An

attack against PRESENT key production has not been published

until now. It uses 26 64-bit intermediate keys for encryption.

The generation of these keys is performed by inserting a 128 bit

or 80 bit user defined master key into the key generation

function and extracting the least significant 64 bits of the output.

The generated keys are included in the round function,

respectively. It should be noted here that the first round key is

not produced and the least significant 64 bits of the user-defined

master key are used. Therefore, the first produced key of the key

generation function will be included in the second round. As a

result, the BORON satisfies the first key (K0) of the 26 keys

(K0-K25) necessary for encryption from the last 64 bits of the

master key and other 25 keys from the key generation function.

In this study, key generation function is used from only 80 bit

master key.

The key update of the Boron is performed according to the

following algorithm. First the Key_Register is shifted cyclically

to the left by 13 bits. Then, the most meaningless 4 bits of this

key record are updated in the S_box. Finally, 4 bits between the

59th and 63rd bits of this key register are updated by XORing

with the 4 bit binary number of that number.

KEY_Register = K79K78...K2K1K0

round_key = K63K62...K2K1K0

1. KEY_Register <<<13

2. [K3K2K1K0] ←S [K3K2K1K0].

3. [K63K62K61K60K59] ← [K63K62K61K60K59] ^ RCi

<<< n expresses leftward cyclic shift of n bits and RCi expresses

the value of the round counter of the i. tour.

3. Hardware Design

The implementation of the BORON encryption algorithm

was first started by designing the hardware in Xilinx Vivado

2017.1 program using the Verilog hardware description

language. The hardware in the algorithm are collected under the

boron module.

After the design of the cipher hardware, Montgomery

modular multiplier was designed in VHDL language to be used

in secure key sharing.

All the designed hardware were packaged and connected

with the ARM processor using the AXI infrastructure.

After the hardware design phase was completed, software

was designed on the embedded ARM microprocessor in the

FPGA to control these hardware and system.

3.1. Boron Module

The Boron module has 64-bit plaintext input. The main input

key length is 80-bit selected. The Boron module is designed to

perform both encryption and decryption in itself. The 1-bit

enc_dec entry specifies whether the module will encrypt or

decrypt the input text. The start and done signals used in the

Boron module are used to communicate with the

microprocessor.

Fig. 3. Boron module RTL schematic

The Boron consists of Round function that repeats itself 25

times. At the same time key production has a repetitive

structure. Thanks to the CU finite state machine in it, the Boron

module is able to perform its functions in a synchronous

manner. It is preferred that all keys be generated and recorded

once instead of generating all keys repeatedly in encryption-

decryption process in the module. Although this draws the

disadvantage of using a lot of space in the first stage, it is

thought that the absence of the key generation process

repeatedly, when considering a continuously working system,

would seriously reduce the total working time, thus minimizing

power consumption.

P_reg

Round_enc

state

PXORK

wire_state

AR_input

Master_Key_reg

Key_Generator

round_key

K_input

wire_round_key /80

RC

circuit_state

circuit_state

K0 K1 K2 K22 K23 K24K3 K25

Fig. 4. Boron module working diagram

Fig. 5. Boron module behavioural simulation result

3.1.1. CU Module

A finite state machine is designed to manage the Boron

module. Five different working states are determined: IDLE,

Key_Generation, Enc, Round25, Dec.

Load P_reg

Load Master_Key_reg

IDLE

start

0

1

Key_Generation

counter<24
counter =

counter+1
evet

enc_dec 1 Enc

counter<24
counter =

counter+1
evet

counter=0

hayır

Round_25

Dec

counter<24
counter =

counter+1

counter=0

hayır

0

evet

done=1

hayır

Fig. 6. CU module working diagram

In the state of IDLE, the processor is expected to wait until

the start signal. If the start signal arrives, it goes into the

Key_Generation state and remains in this state until the counter

reaches 24 (starting from 0) to produce the keys needed for our

Round function. When the counter is set to 24, Enc or Dec is

toggled by looking at enc_dec. Enc status is the encryption

process, and Dec is the decryption process. Holding a counter

holds 24 rounds in this case, and when the counter is 24, it goes

Round25. The Boron module now performs its task and returns

to the IDLE state by pulling the done output high. When doing

this, the counter is reset and ready for new operations.

Fig. 7. CU module RTL schematic

3.1.2. Add_round_key Module

The Add_round_key module performs a simple XOR

operation between the current state and the least significant 64

bits of the round key.

Fig. 8. Add_round_key module RTL schematic

3.1.3. Round_enc Module

The Boron module has a Round function that repeats itself

25 times. The non-linear permutation (S_Box_layer) and the

linear layer (Permutation_Layer) are implemented in the Round

module while the key addition part of the round function is

performed in the Add_round_key module.

Fig. 9. Round_enc module RTL schematic

3.1.3.1 S_Box_Layer Module

The S_Box module consists of a total of 16 s_boxes

operating in parallel with each other producing a 4-bit output

from a 4-bit input. The S_box modules perform a non-linear

cipher change according to the values given in Table 1. When

the module is designed, no reduction is made to the function to

be implemented, inputs and outputs are written directly in the

switch-case structure.

3.1.3.2 Permutation _Layer Module

The Permutation_Layer module has 3 intermediate modules

connected in series. Combines the functions given in Section

2.2.3.

Fig. 10. Permutation_Layer module RTL schematic

3.1.4. Round_dec Module

Round_dec designed as the opposite of the module. This

module will be used for decryption.

Fig. 11. Round_dec module RTL schematic

3.1.5. key_generator Module

The Boron module needs 26 intermediate keys. In this

design, the intermediate keys are stored in the 2080 (26 * 80) -

bit Key_Register. After the user-defined 80-bit key is inserted

into the key_generator module and a set of mathematical

operations are performed, the generated intermediate key is

registered to the most significant 80 bits of the Key_Register. In

each round, the Key_Register is shifted to the right by 80 bits to

ensure that the newly created key remains at the most significant

80 bits. In total, at the end of 26 rounds, the first generated K0

key is placed in the least significant 80 bits of the Key_Register

[79:0], and the last generated key K25 is placed in the most

significant 80 bits of Key_Register [2079:2000]. If the

Add_round_key module is to be used for encryption, it uses

those keys that are generated by shifting the Key_Register to 80

bits to the left of each round starting from the least significant

80 bits (K0) of the Key_Register. If it is to be used for

decryption, it uses the keys generated by scrolling 80 bits right

on each round starting from the most significant 80 bits (K25) of

Key_Register.

Fig. 12. key_generator module RTL schematic

3.2. Block Design

A custom AXI IP block was created in Vivado and the Boron

module was packaged in Boron IP with integrated Verilog

codes. The same process was also done for the Montgomery

modular multiplier written in VHDL language. The Zynq-7000

hardware platform is also included in the block design, so the

AXI communication protocol connections between the Boron

IP, Montgomery IP and the ARM processor have been made

automatically by the program. In this project, the Zynq-7000

platform's ARM microprocessor system is used to control the

Boron cryptographic hardware along with the C code written for

the microprocessor.

Fig. 13. Block design of hardware design

4. Software Design

A microprocessor is used to control the encryption /

decryption equipment of the Boron and to provide inter-

hardware data flow. Instead of embedding MicroBlaze provided

by Xilinx on the FPGA, the Zynboard ARM processor, which is

already available in hardware, is preferred. This avoids

unnecessary space usage on the FPGA for the processor. With

the C code written in the SDK interface, it is said to the Boron

module that will input text, key, healing or decode. Initially

reset will reset the Boron module registers. Inputs with the start

sign are transferred to the module. The start sign is pulled to low

level after a certain period of time so that the module does not

continue its operations repeatedly. When the Boron module

fulfills its tasks, it writes the output it produces to the terminal

via UART communication.

Firstly encryption of a text is performed according to the

code is written. The result is stored in registers. Then, the

encrypted text is transferred the module again and this time the

decryption is performed. If the resulting text overlaps the input

text at the beginning, it prints to the terminal via the UART

where the design is successfully performed. After testing that the

encryption decryption works correctly, Montgomery custom IP

is used to make key share private.

Fig. 14. Outputs of design in SDK interface

6. Conclusions

In this article, it is aimed to design a lightweight crypto

hardware with low power consumption for low-scale embedded

systems. Since the design is more efficient in terms of both

power consumption and area, the Boron encryption algorithm is

preferred. The crypto algorithm has been realized with a

software hardware platform implemented on the FPGA along

with the ARM processor.

Problems arise between the communication between the

ARM processor and the Boron hardware, and the problem is

solved by looking at the simulation output of the Boron

hardware after synthesis.

The Boron crypto module has 2399 slots on the FPGA along

with encryption decryption operations. Compared to popular

encryption algorithms such as AES, these results achieve the

targeted low floor space and low power consumption in the

designed hardware.

It has been determined that improvements can be made to

design a more sophisticated system by investigating how

precautions can be taken against potential side channel attacks

in advanced studies.

Fig. 15. Utilization report of our design

7. References

[1] Advanced Encryption Standard (AES), Federal Information

Processing Standards Publication 197, November 2001.

[2] Barker, William Curt. Recommendation for the triple data

encryption algorithm (TDEA) block cipher. US Department of

Commerce, Technology Administration, National

Institute of Standards and Technology (NIST), 2004.

[3] Petroulakis, Nikolaos E., Ioannis G. Askoxylakis, and Theo

Tryfonas. "Lifelogging in smart environments: challenges and

security threats." Communications (ICC), 2012 IEEE

International Conference on. IEEE, 2012.

[4] K. Finkenzeller, RFID Handbook: Fundamentals and

Applications in Contactless Smart Cards and Identification.

Hoboken, NJ, USA: Wiley, 2003.

[5] GfK. (2017,05, 18). Tech Trends 2017. Available:

https://cdn2.hubspot.net/hubfs/2405078/Landing_Pages_PDF/T

ech%20Trends/Global_201703_Tech_Trends_2017_Report.pdf

[6]Anchris Joubert. (2017, 07, 14). Will the Internet of Things

become a playground for cyber criminals? Available:

https://www.azuruw.com/articles/2017/07/14/will-the-internet-

of-things-become-a-playground-for-cyber-criminals

[7] G. BANSOD, N. PISHAROTY, A. PATIL3, “BORON: an

ultra lightweight and low power encryption design for pervasive

computing”, Springer, 2017.

[8] A. Bogdanov et al., “PRESENT—An ultra-lightweight block

cipher”, Springer-Verlag, Berlin, Germany, 2007, pp. 450–466.

[9] T. Okabe, ‘‘FPGA Implementation and Evaluation of

lightweight block cipher – BORON’’, Tokyo Metropolitan

Industrial Technology Research Institute, 2017.

