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Abstract

In this work, signal space diversity (SSD) is incorporated

into a zero-forcing multiple-input multiple-output system

with various numbers of transmit and receive antennas. We

assume that the number of antennas at both ends is equal

and the channel state information is only available at the

receiver. The performance of the proposed system is stud-

ied under a slow flat Rayleigh fading channel scenario with

correlated transmit antennas and uncorrelated receive an-

tennas. We adopt different realistic transmit antenna corre-

lation models. A number of different component interleav-

ing strategies are compared for these correlation models. It

is shown that the error performance of the system can be

significantly improved by making use of SSD with only a

negligible increase in complexity and no extra use of band-

width/time resources.

1. Introduction

The potential of high data rate transmission without addi-

tional bandwidth or time slots makes multiple-input multiple-

output (MIMO) systems a popular research area. With enough

scattering, the capacity linearly increases with the minimum of

t and r in a single-user MIMO system with t transmitter and r

receiver antennas. This is known as spatial multiplexing. Signal

space diversity (SSD) (also known as modulation diversity) is a

technique used to improve the error performance of the com-

munication systems without the need for extra bandwidth, time

slots, and power [1]. SSD also requires almost no additional

complexity. It has the potential to increase the diversity level

only by utilizing the orthogonal dimensions contained in the

transmitted signal. The concept of SSD is first introduced in [1]

and is applied in two steps. The first part is transforming the

signal constellation such that no two components on the same

coordinate axis are identical. By performing this step, any com-

ponent of any signal point in the constellation gets sufficient

information for the symbol identification. With proper rota-

tion of the signal constellation, this first condition can be sat-

isfied [2]. The second part is ensuring that the components of

the transmitted symbol are independently affected by the chan-

nel. This condition is generally assured by employing compo-

nent interleaving/deinterleaving blocks [2-4]. When these two

conditions are met, the diversity level can be multiplied. For a

two dimensional signal constellation, when each of in-phase (I)

and quadrature (Q) components is independently affected by the

fading through the channel, a dual diversity can be obtained [2-

4]. SSD for single-input single-output systems has been studied

widely [1-4]. More recently, SSD has been also integrated into

MIMO systems [5-10]. Some of these schemes use component

interleaving over time domain, where the interleaving depth re-

quired can be long and burdensome [7], [9]. On the other hand,

in [5], [6], [8], the independence between the fading coefficients

affecting the components of a signal point is provided by trans-

mitting the in-phase and quadrature components of each signal

point over different transmit antennas. In [10], SSD is incor-

porated into MIMO systems with maximal ratio combining and

transmit antenna selection and the performance is studied under

a scenario with correlated receive antennas. The performance

of MIMO systems combined with ZF (zero-forcing) precoding

and SSD is analyzed in [11] by assuming channel state infor-

mation (CSI) both at the transmitter and receiver. In this pa-

per, the performance of transmit antenna correlated ZF MIMO

systems with SSD is investigated for slow flat Rayleigh fading

channels under the assumption of different models of transmit

antenna correlation. We assume that the number of antennas at

both ends is equal and the CSI is only available at the receiver.

For each type of correlation model, bit error rate (BER) per-

formance is illustrated for three, four and five transmit/receive

antennas.

Notation: The operators, |.|, ‖.‖, (.)H , j, R {.} and I {.}
denote the absolute value (magnitude), Euclidean norm, Hermi-

tian transpose,
√
−1, real part of a complex number, and imag-

inary part of a complex number, respectively. The matrices and

column vectors are denoted by uppercase and lowercase bold

letters, respectively.

2. System Model

Fig. 1 shows the block diagram of the proposed system.

We consider a single-user MIMO transmission system with t

transmit antennas and r receive antennas with t = r. The goal

is to simultaneously transmit t independently modulated sym-

bols in a parallel fashion from the transmitter to the receiver. In

the transmitter, a rotated binary phase shift keying (BPSK) sig-

nal constellation is first employed to map the (possibly coded)

data bits into the modulated symbols (si, (i ∈ {1, 2, . . . , t})).
We use siI and siQ to respectively denote the I and Q compo-

nents of the ith modulated symbol, i.e., si. As the rotation angle

for the BPSK signal constellation, 45 degree counter-clockwise

is used [11]. Then, the component interleaving is applied to

the t modulated symbols. The component interleaving is im-

plemented over transmit antennas. Hence, the used component

interleaving technique is not as troublesome as the component

interleaving in time domain, which requires time domain inter-

leaving depths greater than the channel coherence time. The

entries of the transmitted baseband signal x for a certain inter-

leaving strategy are given by saI+j sbQ, (a, b ∈ {1, 2, . . . , t}).
Here, the choice of a and b depends on the interleaving strategy

used. A set of digital-to-analog conversion (DAC) operations

are used to transmit the baseband signal x from the transmit an-



Figure 1. Block diagram of the proposed system.

tennas. The received complex baseband signal y is:

y = Hx + n = h1x1 + h2x2 + ...+ htxt + n (1)

where H is the r-by-t channel matrix with its (i, k) entry, i.e.,

[H]ik ∈ C, denoting the fading coefficient between the kth

transmit antenna and ith receive antenna. Also, h1, h2,...,ht

denote the columns of the matrix H. Additionally, the vector

x ∈ C
t×1 denotes the transmitted baseband signal. Also, x1,

x2,...,xt denote the elements of the vector x. Additionally,

n ∈ C
r×1 represents additive white Gaussian noise at the re-

ceiver such that E{nnH} = N0I with I denoting the identity

matrix. We assume a slow flat Rayleigh fading scenario with

rich scattering and enough antenna spacing only at the receive

side. Hence, the scenario of interest involves uncorrelated re-

ceive antennas and correlated transmit antennas. We have:

H = H̃R
1/2

(2)

where the t-by-t matrix R is the correlation matrix capturing

the effect of the correlation among the transmit antennas. The

elements of the matrix H̃ are independent and identically dis-

tributed (IID) zero-mean complex Gaussian random variables

with unit variance. In our work three types of correlation ma-

trix structures R are used namely uniform, dual, and exponential

correlation models. All of these models have practical applica-

tions.

The entries of the uniform correlation matrix are given by

[R]ik = 1 for i = k and [R]ik = ρ for i 6= k, where [R]ik
represents the ith row kth column element of R. Also, ρ ( 0 <

ρ < 1 ) denotes the correlation coefficient between any two

transmit antennas. We have:

R =




1 ρ ρ ρ · · · ρ ρ

ρ 1 ρ ρ · · · ρ ρ
...

...
...

...
. . .

...
...

ρ ρ ρ ρ · · · ρ 1


 . (3)

For an antenna array, the uniform correlation matrix is applica-

ble when all the transmit antennas are separated with the same

distance from each other.

The elements of the dual correlation matrix are given by

[R]ik = 1 for i = k, [R]ik = ρ for |i− k| = 1, and [R]ik = 0
for the remaining entries. We have:

R =




1 ρ 0 0 · · · 0 0
ρ 1 ρ 0 · · · 0 0
..
.

..

.
..
.

..

.
. . .

..

.
..
.

0 0 0 0 · · · ρ 1


 . (4)

For an antenna array, the dual correlation matrix provides a

more realistic model as compared to the uniform correlation

matrix. The reason behind this can be explained based on the

fact that the correlation between two antennas reduces when the

distance between them increases and when separated far enough

the correlation may be equal to zero.

The entries of the exponential correlation matrix are given

by [R]ik = ρ|i−k|. We have:

R =




1 ρ ρ2 ρ3 · · · ρt−2 ρt−1

ρ 1 ρ ρ2 · · · ρt−3 ρt−2

...
...

...
...

. . .
...

...

ρt−1 ρt−2 ρt−3 ρt−4 · · · ρ 1


 .

(5)

For an antenna array, the exponential correlation matrix pro-

vides a more realistic model as compared to the other discussed

correlation models. The reason behind this can be explained

again by the fact that the correlation between two antennas re-

duces when the distance between them increases.

The receiver uses ZF equalization to suppress the inter-

symbol interference, under the assumption of full CSI be-

ing only available at the receiver. For equalization, the re-

ceived complex baseband signal y is projected onto the vec-

tor hH
i P⊥

i , for all i, where i ∈ {1, 2, . . . , t} and P⊥
i de-

notes the projection matrix onto the null space of the vectors

h1,h2, ...,hi−1,hi+1,hi+2, ...,ht. This yields:

hH
i P⊥

i∥∥hH
i P⊥

i

∥∥y =
∥∥∥hH

i P
⊥
i

∥∥∥xi +
hH
i P⊥

i∥∥hH
i P⊥

i

∥∥n =
∥∥∥hH

i P
⊥
i

∥∥∥ saI+

R

{
hH
i P⊥

i∥∥hH
i P⊥

i

∥∥n
}

+ j

(∥∥∥hH
i P

⊥
i

∥∥∥ sbQ + I

{
hH
i P⊥

i∥∥hH
i P⊥

i

∥∥n
})

(6)

for i ∈ {1, 2, . . . , t}. Suppose that I and Q compo-

nents of the ith symbol si (i ∈ {1, 2, . . . , t}) are

sent from the αth and βth transmit antennas, respec-

tively. The maximum likelihood detector at the receiver

forms the decision variable for the ith symbol (si) as:

di=R

{
h
H
α P

⊥

α

‖hH
α P⊥

α‖y
}
+ jI

{
h
H
β P

⊥

β
∥

∥

∥
hH
β

P⊥

β

∥

∥

∥

y

}
for i ∈ {1, 2, . . . , t}.

3. The scenario of three
transmit/receive antennas

For the scenario with three transmit and receive antennas,

we have two different interleaving strategies to test. These two

strategies are labeled as Strategy 1 and Strategy 2. For the sake

of comparison, we also show the original ZF scheme without

SSD. This is called as Strategy 3. The baseband transmit vectors
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Figure 2. The comparison of the BER performances for the rel-

evant strategies with three transmit and receive antennas under

uniform correlation.
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Figure 3. The comparison of the BER performances for the rel-

evant strategies with three transmit and receive antennas under

dual correlation.

for these strategies are respectively given as:

x=



s1I + js2I
s1Q + js3Q
s3I + js2Q


, x=



s1I + js2I
s3I + js3Q
s1Q + js2Q


, x=



s1I + js1Q
s2I + js2Q
s3I + js3Q


 .

The correlation coefficient ρ is chosen to be equal to 0.85

in all simulations. It can be seen from Figure 2 that under uni-

form correlation, Strategy 1 and Strategy 2 (both with SSD)

yield better performance as compared to Strategy 3 which has

no SSD. For a BER of 10−2, Strategy 1 and Strategy 2 provide

about 2.8 and 2 dB gains. It can be seen from Figure 3 that

under dual correlation, Strategy 1 outperforms Strategy 2 and

Strategy 3. For a BER of 10−2, Strategy 1 provides almost 2.2

dB gain as compared to the other schemes which perform very

close to each other for this scenario. It can be seen from Figure

4 that under exponential correlation, Strategy 1 again performs

better than Strategy 2 and Strategy 3. For a BER of 10−2, Strat-
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Figure 4. The comparison of the BER performances for the rel-

evant strategies with three transmit and receive antennas under

exponential correlation.

egy 1 provides about 2.3 dB gain as compared to Strategy 3. In

this case, Strategy 2 attains around 0.6 dB gain as compared to

Strategy 3. Hence, Strategy 1 yields the best performance in all

the considered correlation models when t = r = 3.

4. The scenario of four
transmit/receive antennas

There exist three different interleaving strategies for the

case of four transmit and receive antennas. These strategies are

labeled as Strategy 1, Strategy 2, and Strategy 3. Here, the orig-

inal ZF scheme without SSD is called Strategy 4. The baseband

transmit vectors for these strategies are respectively given as:

x=




s1I + js2I
s3I + js4I
s1Q + js2Q
s3Q + js4Q


, x=




s1I + js2I
s3I + js4I
s3Q + js4Q
s1Q + js2Q


, x=




s1I + js2I
s1Q + js2Q
s3I + js4I
s3Q + js4Q


 ,

x=




s1I + js1Q
s2I + js2Q
s3I + js3Q
s4I + js4Q


.

The correlation coefficient ρ is chosen to be equal to

0.85 in all simulations. It can be seen from Figure 5 that under

uniform correlation, the Strategies 1, 2 and 3 perform very

similarly and all outperforms Strategy 4 by around 3.3 dB gain

at a BER of 2 × 10−2. It can be seen from Figure 6 that under

dual correlation, Strategy 3 outperforms all the other strategies.

For a BER of 10−2, Strategy 3 produces more than 5.2 dB

gain as compared to Strategy 4 without SSD. It can be seen

from Figure 7 that under exponential correlation, Strategy 3

performs better than all the other strategies as before. In this

case, for a BER of 2× 10−2, Strategy 3 yields about 6 dB gain

as compared to Strategy 4. It can be deduced from the results

that Strategy 3 has a more beneficial component interleaving

strategy than the other strategies for the considered correlation

models.
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Figure 5. The comparison of the BER performances for the

relevant strategies with four transmit and receive antennas under

uniform correlation.
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Figure 6. The comparison of the BER performances for the

relevant strategies with four transmit and receive antennas under

dual correlation.

5. The scenario of five
transmit/receive antennas

There are four distinct interleaving strategies for the sce-

nario with five transmit and receive antennas. These strategies

are labeled as Strategy 1, Strategy 2, Strategy 3, and Strategy 4.

In this case, the original ZF scheme without SSD is represented

as Strategy 5. The baseband transmit vectors for these strategies

are respectively given as:

x=




s1I + js2I
s3I + js4I
s5I + js5Q
s3Q + js4Q
s1Q + js2Q


, x=




s1I + js2I
s3I + js4I
s5I + js5Q
s2Q + js4Q
s1Q + js3Q


, x=




s1I + js2I
s3I + js5I
s4I + js5Q
s2Q + js3Q
s1Q + js4Q


 ,
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Figure 7. The comparison of the BER performances for the

relevant strategies with four transmit and receive antennas under

exponential correlation.
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Figure 8. The comparison of the BER performances for the

relevant strategies with five transmit and receive antennas under

uniform correlation.

x=




s1I + js2I
s3I + js4I
s2Q + js5I
s3Q + js4Q
s1Q + js5Q


, x=




s1I + js1Q
s2I + js2Q
s3I + js3Q
s4I + js4Q
s5I + js5Q


.

The correlation coefficient ρ is chosen to be equal to

0.85 in all simulations. It can be seen from Figure 8 that

under uniform correlation, all the strategies with SSD performs

very similarly. The four strategies with SSD yield about 2.7

dB gain for a BER of 2 × 10−2 as compared to Strategy 5

without SSD. It can be seen from Figure 9 that under dual

correlation, Strategy 3 outperforms other strategies. Strategy

3 produces around 2.5 dB gain as compared to Strategy 5 at a

BER of 2 × 10−2. It can be seen from Figure 10 that under

exponential correlation, Strategy 1 performs better than other

strategies. Strategy 1 produces around 4.3 dB gain as compared

to Strategy 5 at a BER of 10−2.
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Figure 9. The comparison of the BER performances for the

relevant strategies with five transmit and receive antennas under

dual correlation.

0 5 10 15 20

SNR (dB)

10
-3

10
-2

10
-1

10
0

B
E

R

Strategy 1 with SSD

Strategy 2 with SSD

Strategy 3 with SSD

Strategy 4 with SSD

Strategy 5 without SSD

Figure 10. The comparison of the BER performances for the

relevant strategies with five transmit and receive antennas under

exponential correlation.

6. Conclusion

In this work, the integration of SSD into a ZF MIMO sys-

tem has been studied over slow flat Rayleigh fading channels

with BPSK modulation for correlated transmit antennas and un-

correlated receive antennas. Assuming three models for trans-

mit antenna correlation, bit error rate performances of the dif-

ferent component interleaving strategies have been examined.

The proposed scheme has been shown to bring about consid-

erable gains with almost no additional complexity. Also, it

is shown that the performance of the system depends on the

used component interleaving strategy as different interleaving

strategies perform differently under distinct types of correlation

models. The presented technique can also be generalized to

include other two dimensional modulation schemes with mod-

ulation levels higher than two.
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