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Abstract
In this paper, we present an EEG-based brain-computer
interface (BCI) system for classifying motor imagery (MI)
tasks of the same hand using empirical mode decomposition
(EMD) method. The EMD method is employed to decom-
pose the EEG signals into a set of intrinsic mode functions
(IMFs). Then, a set of features is extracted from the ob-
tained IMFs. These features are used to construct a three-
layer hierarchical classification model to discriminate be-
tween four MI tasks of the same hand, namely rest, wrist-
related tasks, finger-related task, and grasp-related task.
In order to evaluate the performance of the proposed ap-
proach, we have collected EEG signals for 18 able-bodied
subjects while imaging to perform the four MI tasks. Ex-
perimental results demonstrate the efficacy of the proposed
approach in decoding MI tasks of the same hand based on
analyzing EEG signals using the EMD method.

1. Introduction
A brain-computer interface (BCI) is an emerging technol-

ogy that aims at providing people who are suffering from se-
vere motor impairments with the ability to communicate with
their surroundings via analyzing brain signals. Several invasive
and noninvasive neuroimaging techniques have been utilized in
BCI systems to record brain activities, such as functional mag-
netic resonance imaging (fMRI), electrocorticographic (ECoG),
electroencephalography (EEG), and magnetoencephalography
(MEG). Among these different neuroimaging techniques, EEG
is considered the most commonly used technique in BCI sys-
tems [1]. This is due to many factors, including the high tempo-
ral resolution of the EEG signals, high portability, noninvasive
nature, and low cost of the recording equipment [1, 2].

During the last two decades, researchers have utilized mo-
tor imagery (MI), which is the process of imagining a motor
act without actually performing it, to design EEG-based BCI
systems that allow individuals with motor disabilities to control
various assistive devices, such as wheelchairs [3], prosthetic de-
vices [4], and computers [5]. Nonetheless, the majority of the
existing MI EEG-based BCI systems have a limited control di-
mensions. In particular, these EEG-based BCI systems were
designed to discriminate between four classes of MI tasks that
are associated with four different body-parts [6–9], including
feet, left hand, right hand, and tongue.

Despite the significant efforts invested in classifying MI
tasks associated with different body-parts, few researchers have
pursued classifying MI tasks within the same hand in order to
increase the control dimensions of EEG-based BCI systems.
Discriminating between MI tasks of the same hand based on

analyzing EEG signals is considered challenging [10–13]. This
can be attributed to the low spatial resolution and the non-
stationary nature of the EEG signals. In particular, the low spa-
tial resolution of the EEG signals reduces the capability to dis-
criminate between MI tasks of the same hand that activate close
regions in the brain [11]. Moreover, the non-stationary nature
of the EEG signals implies that the spectral characteristics of
the EEG signals are changing as a function of time. Therefore,
traditional time-domain and frequency-domain analyses, which
are employing the time-invariance assumption, are considered
inadequate to analyze EEG signals [14, 15].

In this study, we explore the possibility of utilizing the
empirical mode decomposition (EMD) [16] method as a time-
frequency analysis of the EEG signals in order to classify MI
tasks of the same hand. In particular, EEG data was recorded
for 18 able-bodied subjects while imagining to perform four MI
tasks using their right hands. The hand MI tasks considered in
this study are the rest state, wrist-related tasks, fingers-related
tasks, and grasp-related tasks. Then, the EMD method is used
to decompose the acquired EEG signals of each subject into
several intrinsic mode functions (IMFs). The computed IMFs
are segmented into non-overlapping EEG segments, and a set
of features, including the variance, skewness, kurtosis, spectral
flux, spectral flatness, and Renyi entropy, are extracted from
each EEG segment to represent the different classes of MI tasks.
The extracted features are utilized to build a three-layer hier-
archical classification model that classifies each EEG segment
into one of the four MI tasks. Each classification layer is re-
alized using a binary support vector machine (SVM) classifier
with a Gaussian radial basis function (RBF) kernel. Experimen-
tal results show that the performance of the proposed three-layer
classification model outperforms the performance obtained us-
ing traditional multi-class SVM classifier. To the best of our
knowledge, this is the first study that explores the use of EMD
for classifying MI tasks within the same hand.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the recorded EEG dataset, analysis of the EEG
signals using the EMD method, feature extraction, and classi-
fication of the MI tasks. Section 3 presents the experimental
results. In Section 4, we conclude our final thoughts and ad-
dress future endeavors.

2. Materials and Methods
2.1. Experimental Procedure

In this study, EEG signals were acquired from 18 able-
bodied subjects (6 female subjects) while imagining to perform
four types of hand MI tasks using their right hands. In particu-
lar, the hand MI tasks considered in this study are the rest state,



wrist-related tasks, finger-related tasks, and grasp-related tasks.
All subjects gave written informed consent before participating
in the experimental procedure. Furthermore, the experimental
procedure in this study was approved by the Research Ethics
Committee at the German Jordanian University.

During the experiment, each subject was asked to sit com-
fortably on a chair and to rest his/her arms on a desk located in
front of him/her. After that, a computer monitor is used to dis-
play visual cues that instruct the subject to imagine performing
one of the four hand MI tasks. The duration of the visual cue
was equal to 3 seconds, while the duration of the imagination
was equal to 7 seconds. Each subject was asked to repeat each
MI task 7 times.

2.2. Data Acquisition and Preprocessing

Raw EEG data was acquired using the BioSemi ActiveTwo
EEG system (Biosemi B.V., Amsterdam, Netherlands). The
EEG signals were recorded at a sampling rate of 2048 sam-
ples/second using 16 Ag/AgCl electrodes arranged according
to the 10 − 20 international system, as shown in Fig. 1. In this
study, we have selected a subset of five EEG channels, namely
C3, Cz , C4, Pz and Fz , that are highly correlated with MI brain
activities [6].

Figure 1. The positions of the EEG electrodes employed in this
study arranged according to the 10-20 EEG system.

The acquired EEG signals are preprocessed by reducing the
sampling rate to 256 samples/second. Furthermore, a band pass
filter with a bandwidth of 0.5 - 35 Hz is applied to the EEG sig-
nals. In addition, the effect of muscle and electrooculography
(EOG) artifacts was reduced using both the EEGLab and the
automatic artifact removal (AAR) toolboxes [17, 18].

2.3. Time-Frequency Analysis and Feature Extraction

Empirical mode decomposition (EMD) is a method that de-
composes a time domain signal into a set of intrinsic mode func-
tions (IMFs). Unlike the legacy Fourier and Wavelet transforms,
EMD provides a detailed time frequency analysis of the signal
without the need for a priori defined basis function [19]. Fur-
thermore, utilizing the EMD method to perform time-frequency
analysis enables to capture the nonlinear and non-stationary
characteristics of the EEG signals [20]. The EMD method
employs a sifting process to decompose the oscillatory time-
domain signal into AM-FM components [21]. The steps in-
volved in applying the sifting process to an EEG time series
input signal g(t) are described as follows [22, 23]:

I. Compute the maxima and minima points of g(t). Then,
interpolate between the maxima points to find an upper

envelope of g(t). Similarly, interpolate between the min-
ima points to find a lower envelope of g(t).

II. Calculate the mean of the upper and lower envelopes
m(t).

III. Compute the signal c(t) by subtracting m(t) from g(t).
Then, check if c(t) satisfies the conditions of an IMF.
Specifically, in order to consider c(t) as an IMF, c(t) has
to satisfy the following conditions:

• The number of extreme and zero-crossings must
be equal or differ at most by one.

• At any point, the mean value of the envelope de-
fined by the local maxima and the envelope de-
fined by the local minima is equal to zero.

IV. If c(t) is an IMF, compute the residue signal r(t) =
g(t)− c(t) and set g(t) to be equal to r(t). Then, repeat
the first three steps of the sifting process. Otherwise, if
c(t) is not an IMF, set g(t) to be equal to c(t) and repeat
the first three steps of the sifting process.

V. Repeat the sifting process until no more IMFs can be
generated from the residue signal r(t).

Thus, a signal g(t) can be represented as follows:

g(t) =

I∑
i=1

IMFi + r(t) (1)

Where I is the number of IMFs computed for the signal g(t).
In this study, we applied the EMD method to the preprocessed
EEG signals to obtain a set of IMFs for each of the five channels
described in subsection 2.2. Moreover, for each EEG channel,
the first three IMFs, namely IMF1, IMF2, and IMF3, were cho-
sen for further processing and feature extraction [24].

After processing the EEG signals using the EMD method,
feature vectors are extracted from IMF1, IMF2, and IMF3.
Specifically, each IMF is divided into non-overlapping windows
of size 128 samples. Then, a set of features that are com-
monly used for EEG signal analysis are extracted from each
window [25]. Table 1 provides a list of the extracted features
along with their mathematical representations.

2.4. Classification

In this paper, we propose a three-layer hierarchical classifi-
cation model to classify each feature vector into one of the four
hand MI tasks considered in our study. Specifically, the first
layer classifies feature vectors into rest and non-rest MI tasks.
Then, the feature vectors that were classified as non-rest at the
first layer are passed on to the second layer to identify whether
the MI task associated with each vector is a grasp-related task
or non-grasp task. Finally, at the third layer, feature vectors
that were classified as non-grasp MI task at the second layer are
classified into finger-related and wrist-related MI tasks. Fig-
ure 2 provides a schematic diagram of the proposed three-layer
hierarchical classification model.



Table 1. The extracted features from each IMF at each window position.

Feature Mathematical formula Description

Variance σ2 = 1
N

∑N
j=1(W (j)− µ)2 The variance of an EEG segment covered by the

window W , where W (j) is the jth time sample of
W , µ is the mean of the values within W , and N is
the number of samples in W .

Skewness γ = 1

N(σ2)
3
2

∑N
j=1(W (j)− µ)3 The skewness of an EEG segment covered by the

window W .
Kurtosis K = 1

N(σ2)2

∑N
j=1(W (j)− µ)4 The kurtosis of an EEG segment covered by the

window W .

Spectral flux [19] SL =
∑M
k=1

(
|Z(l)
W (k)| − |Z(l−1)

W (k)|
)2

The spectral flux of an EEG segment covered by
the window W . |Z(l)

W (·)| and |Z(l−1)
W (·)| are the

magnitudes of the Fourier transform at window po-
sitions l and l−1, respectively. M is the number of
frequency-domain samples.

Spectral flatness [19] SF =M
(∏M

k=1 |ZW (k)|
) 1

M
(∏M

k=1 |ZW (k)|
)−1

The spectral flatness of an EEG segment covered
by the window W , where |ZW (·)| represents the
magnitude of the Fourier transform of W .

Renyi entropy [15] RE = 1
1−α ln

(∑M
k=1

(
|ZW (k)|∑M

k=1
|ZW (k)|

)α)
The Renyi entropy of an EEG segment covered by
the window W . The parameter α is selected to be
equal to 3.

Figure 2. Schematic diagram of the proposed three-layer hier-
archical classification model.

In this study, each classification layer was implemented us-
ing binary SVM classifiers with RBF kernel [26]. The perfor-
mance of the SVM classifier with RBF kernel depends on the
selected values of the RBF kernel parameter (σ) and the regu-
larization parameter (C > 0) [6, 27]. To tune these two param-
eters, we perform a grid-based search [28, 29] along two direc-
tions to determine the values of σ and C for each classification
node. In the first direction, we vary the value of the parameter
σ, while in the second direction we vary the value of the pa-
rameter C. Then, the best SVM model is selected such that its
parameters maximize the average classification accuracy.

3. Experimental Results and Discussion
In order to quantify the performance of the proposed ap-

proach, we utilize the average classification accuracy as a stan-
dard evaluation metric to measure the performance of each layer
of the proposed hierarchial classification model. The accuracy
can be defined as follows [27]:

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
, (2)

where TP represents the number of true positive cases, TN rep-
resents the number of true negative cases, FP is the number of
false positive cases, and FN represents the number of false nega-
tive cases. Furthermore, we compare the obtained performance
of our proposed hierarchical classification model with the per-
formance obtained using traditional multi-class SVM classifier
with RBF kernel function. In both classification models, namely
the hierarchical classification model and the single multi-class
model, we compute the accuracy based on utilizing a 10-fold
cross-validation procedure [6]. In particular, we randomly di-
vide the feature vectors associated with the four hand MI tasks
performed by each subject into 10 folds. Nine folds are used to
train the classifiers in each approach, while the remaining fold
is used for testing. This procedure is repeated for ten times, and
the overall accuracy is computed by averaging the results ob-
tained from each repetition. The results of each classification
model are described in the following subsections.

3.1. Results of the Hierarchical Classification Model

Figure 3 shows the average classification accuracy of the
first layer computed based on utilizing the feature vectors ex-
tracted from each IMF for each subject. The average accuracy±
standard deviation of the first layer computed over the eigh-
teen subjects for IMF1, IMF2, and IMF3 were 0.78 ± 0.08,
0.72±0.04, and 0.67±0.03, respectively. The results presented
in Fig. 3 indicate that the best performance of the first layer was
achieved using the feature vectors extracted from IMF1.

Figure 4 presents the average classification accuracy of the
second layer in discriminating between grasp and non-grasp MI
tasks for each subject using each of the three IMFs. The av-
erage accuracy± standard deviation of the second layer com-
puted over the eighteen subjects for IMF1, IMF2, and IMF3

were 0.68 ± 0.08, 0.67 ± 0.07, and 0.66 ± 0.05, respectively.
Similar to the results obtained for the first layer, Fig. 4 indicates
that the best performance of the second layer was achieved us-
ing the feature vectors extracted from IMF1.

Figure 5 shows the obtained average classification accuracy



of the third layer in discriminating between wrist- and fingers-
related MI tasks for each subject using each of the three IMFs.
The average accuracy± standard deviation of the third layer
computed over the eighteen subjects for IMF1, IMF2, and IMF3

were 0.67 ± 0.11, 0.68 ± 0.08, and 0.58 ± 0.13, respectively.
The results obtained for the third layer indicate that using the
features extracted from IMF2 achieved a slightly better perfor-
mance compared with the results obtained using the features
extracted from IMF1. On the other hand, using the features
extracted from IMF3, the performance of the third layer has re-
duced to 0.58± 0.13.

The overall average accuracy of the three layers for IMF1,
IMF2, and IMF3 were 0.71, 0.69, and 0.64, respectively. These
results indicate that the performance of our proposed hierarchi-
cal classification model is above the average random classifica-
tion accuracy, which is equal to 25%.

Figure 3. Results of the first layer in our proposed hierarchical
classification model.

Figure 4. Results of the second layer in our proposed hierarchi-
cal classification model.

Figure 5. Results of the third layer in our proposed hierarchical
classification model.

3.2. Results of the Traditional Multi-Class Classification
Model

In order to compare the performance of our proposed
three-layer hierarchical classification model with the traditional

multi-class classification model, we have constructed a multi-
class SVM classifier to classify feature vectors into one of the
four MI tasks using the one-versus-one scheme. Figure 6 shows
the average classification accuracy obtained using each of the
three IMFs for each subject. The average accuracy± standard
deviation of the multi-class SVM model computed over the
eighteen subjects for IMF1, IMF2, and IMF3 were 00.5±0.065,
0.48 ± 0.067, and 0.44 ± 0.07, respectively. In comparison
with the results presented in subsection 3.1, our proposed hier-
archical classification model has significantly outperformed the
performance of the traditional multi-class classification model.

Figure 6. Results of the multi-class SVM classifier for each of
the three IMFs.

4. Conclusion and Future Work
In this paper, we investigated the possibility of classifying

four MI tasks of the same hand based on analyzing EEG signals
using the EMD method. The proposed approach employed the
EMD method to decompose the EEG signals into three IMFs.
Then, a set of features was extracted from the IMFs and used
to build a three-layer hierarchical classification model to dis-
criminate between rest, wrist-related MI tasks, finger-related MI
tasks, and grasp-related MI tasks. Experimental results show
that our proposed three-layer hierarchical classification model
yielded promising results with an overall average accuracy of
71% based on the features extracted from IMF1. In future
work, we intend to expand our proposed hierarchical classifica-
tion model to include subcategories of the considered hand MI
tasks in this study. Moreover, we plan to perform feature anal-
ysis in order to investigate the possibility and efficacy of repre-
senting the EEG signals using other features extracted from the
computed IMFs.
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