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Abstract 
  

In this article, an adaptive model predictive controller (MPC) 

is designed for the position control of the self-balancing two-

wheeled robot system. The system future output is optimized 

using the MPC controller by computing the manipulated 

variable trajectory. Traditional MPC uses a Linear-Time-

Invariant (LTI) dynamic model of the system for the 

prediction of future behavior. The model of the self-balancing 

two-wheeled robot system is strongly nonlinear which 

degrades the prediction accuracy of the traditional MPC 

controller. Therefore, an adaptive MPC controller is designed 

based on linear-time-varying Kalman filter which online 

tunes and updates the estimated system parameters and 

accordingly produces the control effort in the presence of the 

input/output and state constraints. The performance of the 

proposed controller is compared with the traditional MPC 

controller and PID controller. The results show improved 

reference tracking and better stability for the proposed 

adaptive MPC controller as compared to traditional MPC 

and PID controller.  

  

1. Introduction 
  

An inverted pendulum is used in order to approximate the 

model of two-wheeled robot system [1]. In the literature, various 

control schemes have been reported for the position control of the 

two-wheeled robot system. [2] developed a state-feedback 

controller for stabalizing thse inverted pendulum. [3] developed 

a two-wheeled inverted pendulum which had steering ability. [4] 

designed a mobile robot based on a two-wheeled differential drive 

inverted pendulum. [5] designed a robot based two-wheeled 

wheelchair.The robot is balanced by a simple PI control scheme. 

[6] designed a Linear quadratic Gaussian (LQG) based control 

scheme in order to control the robotic wheelchair. [7] developed 

a nonlinear control scheme for regulating the inverted pendulm 

position. [8] proposed a feedback-error-learning (FEL) controller 

for the purpose of stablizing a double pendulum. A comparison 

between PID controller and fuzzy logic controller for stablizing a 

double inverted pendulum has been presented by [9]. The 

controller utilized a Pole placement state-feedback technique. A 

cascade control loop is utilized in order to reduce the complexity 

of the controller. However, there is a shortcoming with the 

feedback linearization techniques that they require an exact 

information regarding the system parameters. 

MPC controller is largely utilized in industry in order to design 

controllers for the nonlinear complex processes [10]. The 

minimization of the cost function is done for obtaining optimal 

control for the plant [11, 12]. Regardless of the fact that most of 

the practical processes have nonlinear nature, MPC mostly 

addresses the optimization problem by linearizing the nonlinear 

plant model, because the linear model is fast and easy to develop 

as compared to nonlinear model. Also, the robustness and 

stability are relatively easy to provide in linearized model as 

compared to the nonlinear model. Due to these facts, the nonlinear 

MPC application is limited but has a great potential [13]. For a 

strongly nonlinear plant model, the linearization of the system 

does not give acceptable performance in all the operating 

conditions. For such systems, satisfactory results cannot be 

obtained from the linearization of the plant, until and unless the 

plant always operates in the neighborhood of the operating 

conditions. Adaptive linearization of a plant online updates the 

linearizing process based on the measurement data. [14] proposed 

control strategies based on the multistep Newton-type, in which 

the linearization of the nonlinear plant is done around a nominal 

trajectory and then the quadratic problem is solved over the 

horizon. [15] proposed a dual mode robust controller based on 

receding horizon for a class of nonlinear systems having model 

error and control and state constraints.  In this paper, a linear time 

varying Kalman filter is used to online update the gains of the 

filter at each control interval in order to keep uniformity with the 

updated model of the process. In section 2, the analytical model 

of the two-wheeled robot is given. The design of the adaptive 

MPC controller is provided in section 3. Section 4 consists of the 

results after applying the designed adaptive MPC controller to the 

robot system. Section 5 consists of the conclusion. 

  

2. Analytical Model of Two-Wheeled Robot System 

  

The analytical model of two-wheeled robot is obtained using 

an inverted pendulum fixed on the top of the cart moving in a 

single plane as depicted in Fig. 1. 

By utilizing the Newton’s law, the force equations are 

obtained as follows: 

                                 𝑚𝑐
𝑑𝑥2

𝑑𝑡2 = 𝑢 − 𝑄 (1) 

𝑄 = 𝑚
𝑑2

𝑑𝑡2
(𝑥 + 𝑙𝑐) = 𝑚�̈� + 𝑚𝑙𝑐∅̈ cos ∅ − 𝑚𝑙𝑐 sin ∅          (2) 

𝑚𝑔 − 𝑃 = 𝑚
𝑑2

𝑑𝑡2
(𝑙𝑐 cos ∅) =  𝑚𝑙𝑐[−∅̈ sin ∅ − (∅)̇2 cos ∅]    (3) 

𝑚𝑔𝑙𝑐 sin ∅ = 𝑚𝐿∅̈ . 𝑙𝑐 + 𝑚�̈�𝑙𝑐 cos ∅                    (4) 

 By making the assumption that ∅ and ∅̇ is very small, the 

system is linearized and the linearized equations are shown as 

following:  

     𝑚𝑐𝑥̈ = 𝑢 − 𝑚�̈� − 𝑚𝐿∅̈                                                    (5) 

𝑔∅ = 𝑙𝑐 + �̈�        (6) 

𝑚𝑐�̈� = 𝑢 − 𝑚𝑔∅       (7) 

𝑚𝑐𝑙𝑐∅̈ = (𝑚𝑐 + 𝑚)𝑔∅ − 𝑢      (8) 

The Laplace transforms of the above equations are given as 

follows: 

𝑚𝑐𝑠2�̂�(𝑠) = �̂�(𝑠) − 𝑚𝑔∅̂(𝑠)      (9) 



𝑚𝑐𝑙𝑐∅̂(𝑠) = (𝑀 + 𝑚)𝑔∅̂(𝑠) − �̂�(𝑠)     (10) 

Therefore, 

�̂�𝑥𝑢(𝑠) =
𝑠2−𝑔

𝑠2[𝑚𝑐𝑠2−(𝑚𝑐+𝑚)𝑔]
        (11) 

�̂�∅𝑢(𝑠) =
−1

𝑚𝑐𝑠2−(𝑚𝑐+𝑚)𝑔
        (12) 

 

 

Fig. 1. Inverted pendulum system with the cart 

By selecting the state variables as 𝑥1 = 𝑥, 𝑥2 = 𝑥,̇  𝑥3 = ∅ and 

𝑥4 =  ∅,̇  the state space representation is shown follows: 

[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

0 1 0 0
0 0 −𝑚𝑔/𝑚𝑐 0
0 0 0 1
0 0 (𝑚𝑐 + 𝑚)𝑔/(𝑚𝑐𝑙𝑐) 0

] [

𝑥1

𝑥2

𝑥3
𝑥4

] + [

0
1 𝑚𝑐⁄

0
−1 𝑚𝑐𝑙𝑐⁄

] 𝑢 

𝑦 = [1 0  0 0] [

𝑥1

𝑥2

𝑥3
𝑥4

]     (13) 

The parameters used for the system are; Mass of the cart 𝑚𝑐 =
0.7 𝑘𝑔, mass of the pendulum 𝑚 = 0.4𝑘𝑔  and length of the 

pendulum 𝑙𝑐 = 0.4𝑚 

  

3. Adaptive Model Predictive Controller Design 
  

Model Predictive Control (MPC) is one of the popular 

technique of optimization in control.  It repeatedly evaluates the 

control input at each instance of time using a finite horizon 

problem of optimization based on the given system model. It is 

the most significant option for handling control problems for 

systems with constraints on inputs and states. As most of the 

models in practice are non-linear, MPC is widely implemented on 

linear models. The reason behind is this, that it is simple and fast 

to develop a linear model as compared to nonlinear. In terms of 

stability and robustness, it is hard to achieve these two in 

nonlinear systems because the nonlinear systems and constraints 

leads to a non-convex problem of optimization. These issues are 

difficult to address in nonlinear systems. Therefore, the 

implementation of MPC for nonlinear systems is very limited in 

practice as compared to linear systems. For dealing with 

uncertainties in a system model, a robust MPC works very well. 

However, the performance of control is degraded by using the 

fixed model of system.  

Using MPC control, there are prediction errors which are quite 

significant if the plant is highly nonlinear. For this purpose, 

Adaptive MPC is used so that MPC performance is not degraded 

due to the prediction errors. The adaptive nature of MPC uses a 

fixed model in such a way so that its LTI model parameters evolve 

gradually as the time progress. The Adaptive MPC always 

updates the model of plant and nominal operating conditions for 

every control interval and it remains same over the prediction 

horizon. In order to design the adaptive MPC controller, first a 

linear optimal MPC controller is designed based on the initial 

operating conditions and then online estimation method is used in 

order to obtain the adaptive MPC controller.  

The optimal MPC is designed for the self-balancing two 

wheeled robot system in [16], and is given as follows. The control 

trajectory is modeled using a set of orthonormal functions. The 

control signal should have a bound on its integral squared value. 

If the control signal is represented by 𝑢(𝑡), then the subsequent 

condition should be met as given in [16]. 

∫ 𝑢(𝑡)2𝑑𝑡 < ∞

∞

0

 

In case of constant reference signal, the following condition 

should meet in order to design the MPC controller. 

∫ �̇�(𝑡)𝑑𝑡 < ∞

∞

0

 

The state space equations of the system having 𝑟 inputs and 𝑞 

outputs is given as below; 

�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑟𝑥𝑟(𝑡) 

where, 𝑥𝑟(𝑡)  have dimensions of n1. 𝐴𝑟 , 𝐵𝑟  and 𝐶𝑟  have 

dimensions of 𝑚1 × 𝑚1, 𝑚1 × 𝑟 and 𝑞 × 𝑟 respectively.  

By defining the auxiliary variables as following: 

𝑧(𝑡) = �̇�𝑟(𝑡) 

𝑦(𝑡) = 𝐶𝑟𝑥𝑟(𝑡) 

and by choosing new state variables as 𝑥(𝑡) =
[𝑧(𝑡)𝑇 𝑦(𝑡)𝑇 ]T, the following state space model is obtained in 

augmented form: 

[
�̇�(𝑡)

�̇�(𝑡)
] =  [

𝐴𝑟 0𝑟
𝑇

𝐶𝑟 0𝑞×𝑞
] [

𝑧(𝑡)

𝑦(𝑡)
] + [

𝐵𝑟

0𝑞×𝑟
] �̇�(𝑡) 

𝑦(𝑡) = [𝑂𝑟 𝐼𝑞×𝑞] [
𝑧(𝑡)

𝑦(𝑡)
]   (14) 

Where 𝐼𝑞×𝑞  represent identity matrix, 0𝑞×𝑞  and 0𝑞×𝑟 

represent zero matrices. By rewriting Equation (14): 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵�̇�(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) 

In case of disturbance, the model is given as follows: 

�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑢(𝑡) + 𝐵𝑑𝑤(𝑡) 

𝑦(𝑡) = 𝐶𝑟𝑥𝑟(𝑡) 

where w(t) represents unmeasured disturbance. 

The cost function is given as follows: 

𝐽 = ∫ (𝑥(𝑡𝑛 + 𝜏|𝑡𝑛)𝑇𝑇𝐿

0
𝑄𝑥(𝑡𝑛 + 𝜏|𝑡𝑛) + �̇�(𝜏)𝑇𝑅�̇�(𝜏))𝑑𝜏 (15) 

The matrices Q and R are positive semidefinite. The cost 

function in case of MPC controller is selected as follows: 

𝐽 = ∫ ((𝑟(𝑡𝑛) − 𝑦(𝑡𝑛 + 𝜏|𝑡𝑛))𝑇𝑇𝐿

0
(𝑟(𝑡𝑛) − 𝑦(𝑡𝑛 + 𝜏|𝑡𝑛)) +

�̇�(𝜏)𝑇𝑅�̇�(𝜏))𝑑𝜏   

In case of a constant reference, the reference is subtracted from 

𝑦(𝑡𝑛 + 𝜏|𝑡𝑛) and the resulting model is given as follows: 

[
�̇�(𝑡𝑛 + 𝜏|𝑡𝑛)

�̇�(𝑡𝑛 + 𝜏|𝑡𝑛)
] =  [

𝐴𝑟 𝑂𝑟
𝑇

𝐶𝑟 𝑂𝑞×𝑞
] [

𝑧(𝑡𝑛 + 𝜏|𝑡𝑛)

𝑒(𝑡𝑛 + 𝜏|𝑡𝑛)
] + [

𝐵𝑟

𝑂𝑞×𝑟
] �̇�(𝜏) 

Where 𝑒(𝑡𝑛 + 𝜏|𝑡𝑛) is 𝑦(𝑡𝑛 + 𝜏|𝑡𝑛) −  𝑟(𝑡𝑛) . 𝑟(𝑡𝑛)  is 

denoted by a constant vector having length 0 ≤ 𝜏 ≤ 𝑇𝐿 . Q is 

selected as 𝐶𝑇𝐶 , and the cost function is selected as given in 

Equation (15). Choosing R as following: 

𝑅 = 𝑑𝑖𝑎𝑔(𝑟𝑠) 

where 𝑠 = 1,2,3, . . 𝑟 

Therefore, 

∫ �̇�(𝜏)𝑇𝑅�̇�(𝜏)
𝑇𝐿

0

𝑑𝜏 = ∑ ∫ 𝑟𝑠�̇�𝑠(𝜏)2
𝑇𝐿

0

𝑑𝜏

𝑟

𝑠=1

 



∫ 𝑢�̇�(𝜏)𝑇𝑢�̇�(𝜏)
𝑇𝐿

0

𝑑𝜏 ≈ ∫ 𝛾𝑠
𝑇

∞

0

𝐺𝑠(𝜏)𝐺𝑠(𝜏)𝑇𝛾𝑠𝑑𝜏 = 𝛾𝑠
𝑇𝛾𝑠 

where ∫ 𝐺𝑠(𝜏)𝐺𝑠(𝜏)𝑇∞

0
𝑑𝜏 is the identity matrix. Hence; 

 𝐽 = ∫ (𝑥(𝑡𝑛 + 𝜏|𝑡𝑛)𝑇𝑇𝐿

0
𝑄𝑥(𝑡𝑛 + 𝜏|𝑡𝑛)𝑑𝜏 + 𝛾𝑠

𝑇𝑅𝐺𝛾𝑠  (16) 

Here 𝑅𝐺 denotes the block diagonal matrix and the 𝑠𝑡ℎ block 

is given as 𝑅𝑠. By rewriting (17): 

𝐽 = ∫ (𝑒𝐴𝜏𝑥(𝑡𝑛) + 𝜗(𝜏)𝑇𝛾)𝑇𝑄
𝑇𝐿

0
(𝑒𝐴𝜏𝑥(𝑡𝑛) + 𝜗(𝜏)𝑇𝛾) +

        𝛾𝑠
𝑇𝑅𝐺𝛾𝑠      (17) 

Where (𝑒𝐴𝜏𝑥(𝑡𝑛) + 𝜗(𝜏)𝑇𝛾)  is the prediction value of 

𝑥(𝑡𝑛 + 𝜏|𝑡𝑛). Equation (17) denotes a quadratic function of 𝛾. 
Further,  

𝐽 = 𝛾𝑇 (∫ 𝜗(𝜏)𝑄𝜗(𝜏)𝑇𝑑𝜏 + 𝑅𝐺
𝑇𝐿

0
) 𝛾 +

2𝛾𝑇 ∫ 𝜗(𝜏)𝑄𝑒𝐴𝜏𝑑𝜏𝑥(𝑡𝑛) + 𝑥(𝑡𝑛)𝑇 ∫ 𝑒𝐴𝑇𝜏𝑇𝐿

0

𝑇𝐿

0
𝑄𝑒𝐴𝜏𝑑𝜏 𝑥(𝑡𝑛)    (18)  

Letting ∫ 𝜗(𝜏)𝑄𝜗(𝜏)𝑇𝑑𝜏 + 𝑅𝐺
𝑇𝐿

0
= 𝜇  and ∫ 𝜗(𝜏)𝑄𝑒𝐴𝜏𝑑𝜏

𝑇𝐿

0
=

𝜌 and by the square completion of (18), the optimal value of 𝛾 

becomes as following: 

𝛾 = −𝜇−1𝜌𝑥(𝑡𝑛) 

And the minimum value of the cost function comes out to be, 

𝐽𝑚𝑖𝑛 = 𝑥(𝑡𝑛)𝑇 (∫ 𝑒𝐴𝑇𝜏𝑄
𝑇𝐿

0
𝑒𝐴𝜏𝑑𝜏 − 𝜌𝑇𝜇−1𝜌) 𝑥(𝑡𝑛)  (19) 

The Adaptive MPC always updates the model of plant at 

nominal operating conditions for every control interval and it 

remains same over the prediction horizon. 

The discrete-time LTI model of plant is used as the basis for 

adaptive MPC. The model is given as below: 

𝑥(𝑛 + 1) = 𝐴𝑥(𝑛) + 𝐵𝑢𝑢(𝑛) + 𝐵𝑣𝑣(𝑛) +  𝐵𝑑𝑑(𝑛)      (20a) 

𝑦(𝑛) = 𝐶𝑥(𝑛) +  𝐷𝑣𝑣(𝑛) + 𝐷𝑑𝑑(𝑛)                 (20b) 

 

   Where 𝑛  denotes discrete time index, 𝑥  are 𝑚𝑥  states of 

plant model, 𝑢  are 𝑛𝑢  manipulated inputs controlled by MPC 

controller, 𝑣  are 𝑚𝑣  measured disturbance inputs, 𝑑  are 𝑚𝑑 

unmeasured disturbance inputs and 𝑦 are 𝑚𝑦 plant outputs which 

consist of measured 𝑚𝑦𝑚  and unmeasured 𝑚𝑦𝑢  outputs. The 

𝑚𝑥 ,  𝑚𝑢 ,  𝑚𝑦 ,  𝑚𝑑 ,  𝑚𝑦𝑚  and 𝑚𝑦𝑢  should be all constants. 

Furthermore, the configuration for input and output signals 

should remain constant. There are some other requirements 

necessary for control of adaptive MPC, that are time delay and 

sample time (𝑇𝑠). In addition to this, there should be no direct 

feed-through component, meaning that 𝐷𝑢 = 0  for the above 

discrete-time model.   

In adaptive MPC controller as the time passes, the nominal 

operating point is updated along with the plant model. For the 

nominal conditions the above discrete time plant model is 

modified as shown below: 

𝑥(𝑛 + 1) = �̅� + 𝐴(𝑥(𝑛) − �̅�) + 𝐵(𝑢𝑡(𝑛) − 𝑢𝑡̅̅̅) + ∆𝑥̅̅̅̅      (21a) 

𝑦(𝑛) = �̅� + 𝐶(𝑥(𝑛) − �̅�) + 𝐷(𝑢𝑡(𝑛) − 𝑢𝑡̅̅̅)                (21b) 

In the above Eq. (21), 𝐴, 𝐵, 𝐶 and 𝐷 are defined as system’s 

parameter matrices which are to be updated. 𝑢𝑡 is designated as 

the combined plant input variable, consisting of 𝑢, 𝑣  and 𝑑 

variables as given in Eq. (20). There are several conditions 

imposed for nominal operations of plant such as; �̅� are nominal 

states "𝑛𝑥" , ∆𝑥̅̅̅̅  are increments of nominal state "𝑛𝑥" , 𝑢𝑡̅̅̅  are 

nominal inputs "𝑛𝑢𝑡" and �̅� are nominal outputs "𝑛𝑦". 

In estimation of states, linear MPC uses a Static Kalman Filter 

(SKF) for updating the states of a controller. This includes states 

of plant model 𝑛𝑥𝑝,  states of disturbance model 𝑛𝑑(≥ 0),  and 

states of measurement noise model are 𝑛𝑛(≥ 0). 𝐿 and 𝑀 are the 

two gain matrices, which are the essential requirement for SKF. 

Besides this, during the time of initialization, the model predictive 

controller (MPC) evaluates these gain matrices. These gain 

matrices truly depend upon the models of plant, disturbance and 

noise parameters as well as the stochastic and random signals 

which is vital for the operations of models of noise and 

disturbance. 

 The significance of Kalman filter is clearly observed when it 

is used in Adaptive MPC. It tunes the gain matrices 𝐿 and 𝑀 at 

each and every control interval and maintain perfect synchronism 

while the plant model is updated simultaneously as shown in Eq. 

(22), which is a linear time varying Kalman filter. 

𝐿𝑛 = (𝐴𝑛𝑃𝑛|𝑛−1𝐶𝑠,𝑘
𝑇 + 𝑁)(𝐶𝑠,𝑛𝑃𝑛|𝑛−1𝐶𝑠,𝑛

𝑇 + 𝑅)
−1

            (22a) 

𝑀𝑛 = (𝑃𝑛|𝑛−1𝐶𝑠,𝑛
𝑇 )(𝐶𝑠,𝑛𝑃𝑛|𝑛−1𝐶𝑠,𝑛

𝑇 + 𝑅)
−1

                (22b) 

𝑃𝑛+1|𝑛 = 𝐴𝑛𝑃𝑛|𝑛−1𝐴𝑛
𝑇 − (𝐴𝑛𝑃𝑛|𝑛−1𝐶𝑠,𝑛

𝑇 + 𝑁)𝐿𝑛
𝑇 + 𝑄    (22c) 

In the above Eq. (22), 𝑄, 𝑅 and 𝑁  are covariance matrices 

which are constant in nature as clearly defined in state estimation 

of MPC. 

 The parameter matrices of state space are 𝐴𝑛and 𝐶𝑠,𝑛, these 

are used in the state of controller as can be seen in MPC. The gain 

matrices are 𝐿𝑛 and 𝑀𝑛 , which updates at every discrete time 

index 𝑛. The error of state estimate of a covariance matrix is 

designated as the value of 𝑃𝑛+1|𝑛 , which is defined at every 

𝑛 index of time.   

  

4. Results 
  

For simulating the design adaptive MPC controller for the 

position control of Self-balancing robot system, Matlab is used as 

simulation tool. A discrete time Self-balancing robot system 

model is online identified at each control interval and then the 

internal plant model is updated using the adaptive MPC controller 

achieving successfully the nonlinear control. The single wheeled 

robot system nonlinear model is first linearized at the initial 

operating conditions.  

A linear optimal MPC controller is designed first at the initial 

operating conditions and then it is combined with the online 

estimation scheme in order to implement the adaptive MPC 

scheme. The constraints of -1.5 and +1.5 are imposed on the 

manipulated variable and the corresponding response of the 

system is displayed in Fig. 2. The system is tracking the reference 

position quite well in the presence of the constraints.  

 

 

Fig. 2. MPC controller response with constraints on the 

variables 



A comparison is established between the MPC controller and 

the traditional PID controller for the reference tracking of the self-

balancing robot. Fig. 3 shows the corresponding comparison. The 

tuning of the PID controller is performed by using the Ziegler-

Nichols method. 

 

 

Fig. 3. Comparison of the PID and MPC controller 

 

Fig. 4. Unit Step response of robot system with adaptive 

MPC 

The online estimation is performed using Kalman filter with 

the noise covariance of 0.012. Fig. 4 shows the results of applying 

adaptive MPC controller to the self-balancing robot system for its 

position control. 

 The system has a settling time of 0.95 sec. There is no steady 

state error present in the system. Fig. 5 shows the comparison of 

adaptive MPC and non-adaptive MPC controllers for the position 

control of the self-balancing robot system. The negative 

overshoot has decreased in the adaptive MPC scheme, also the 

settling time has reduced significantly as compared to the non-

adaptive MPC controller. 

 

 

Fig. 5. Comparison of adaptive and non-adaptive MPC 

controller 

   

5. Conclusion 
  

Self-balancing two wheeled robot system is an adaptive 

system mimicing human nature in avoiding the obstacles while 

moving. In this article, an adaptive Model Predictive Controller 

is designed in order to track the position of Self-balancing Two-

wheeled robot. Matlab is utilized in order to simulate the designed 

adaptive MPC controller. Step reference tracking is used in order 

to evaluate the performacne of the designed adaptive controller. 

Results indicate that MPC controller performs better in the 

presence of manipulated variable constriants, nonlinearities, and 

perturbations in the system dynamics. A comparison is estabished 

amongst the responses of the adaptive MPC controller and non-

adaptive MPC controller. The results indicate that tracking 

accuracy and ste-speed for the adaptive MPC controller are better 

as compared to the non-adaptive MPC controller. 
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