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Abstract
Cellular Automata with Random Memory (CARM) is a
new Cellular Automata model which has been recently in-
roduced. In this model, instead of memories, delay lines are
used. Therefore, how much previous times to be considered
is a random process. Implementation of CARM model is not
required any special hardware since delay in discrete time
systems can be easily generated from a random delay char-
acteristics of wires and transistors in programmable logic
devices. In this paper, a network of locally coupled CARM
model has been studied. Each CARM model is thought to be
a random number generator and here we will present that
these generators can synchronise with local coupling keep-
ing random behaviour of each cells in the network.

1. Introduction
Cellular Automata (CA) are discrete dynamical systems

used in many kinds of applications like modelling, image pro-
cessing, random number generating etc.

The next states of the cells depend on only the current states
of the cells, in a standard CA. However, in a Cellular Automata
with Memory (CAM), the next states of the cells rely on the
previous states, in addition to current states of the cells. The
first known CAM is the model proposed by Edward Fredkin [1].
In addition, many kinds of CAM models have been proposed,
so far [2][3][4][5].

Cellular Automata with Random Memory (CARM) is a
new CA model which has been recently proposed [6]. Con-
sidering the dynamics of a CARM, the next states of the cells
depend on randomly chosen previous or current states, instead
of specified previous or current states of the cells in the CAM
manner.

In this paper, outputs of two CARMs with the same param-
eters except the probabilistic parameters which are the random
delay values are tried to distinguish. For this manner, the well-
known statistical test named Poker Test is chosen as a merit
function to distinguish the random outputs of CARMs. The
experiments show that the new method is very useful to dis-
tinguish CARM with different probabilistic parameters. Fur-
thermore, locally coupled CARM networks are analysed in this
paper. Interestingly, experiments show that after local coupling,
two CARMs are synchronized such that they are generates out-
puts with the similar statistical characteristic.

The paper is organised as follows. In Section II, and III ab-
stract form of CA and CAM models have been given. In Section
IV, definitions of a CARM and the sub-models of it have been
given. In Section V, the statistical characteristics of an CARM
have been extracted using Poker Test. Furthermore, ,in Section
VI, locally coupled CARMs have been proposed and analysed

by their results of the Poker Tests. Finally, Section VII con-
cludes the paper with a short summary.

2. Cellular Automata (CA)
A d-dimensional Cellular Automaton (CA) can be defined

with a cellular space Zd, a set of state Q, a neighbourhood V
and a local rule f . The neighbourhood V is defined as follows,

V = (i1, i2, . . . , is), i1, . . . , is ∈ Zd.

The states of the cells are determined for every time step ac-
cording to the local rule, f , such that f : Qs → Q, where s
denotes the number of elements in neighbourhood V . Hence
the dynamics of an CA is given as follows

αi(n+ 1) = f(αi+i1(n), αi+i1(n), . . . , αi+is(n)) (1)

where αi(n) denotes the state of cell sited at point i ∈ Zd for
time step n.

An Elementary Cellular Automata (ECA)[7] is defined by
Z, set of statesQ = {0, 1}, neighbourhood V = (−1, 0, 1) and
a elementary local rule f : Q3 → Q. Therefore the dynamics
of an ECA is given by

αi(n+ 1) = f(αi−1(n), αi(n), αi+1(n)). (2)

An example of an elementary local rule, named Rule 150 is
given in Fig. 1 (black boxes denotes 1, white boxes denotes 2).
Each triple value at the upper row of the figure determine the all
combinations of the states αi−1(n), αi(n) and αi+1(n), from
left to right. αi(n+1) values assigning to the each above triple
are given at the lower row of the Fig. 1. Notice that the decimal
value of the lower row is 150 .

Figure 1. Wolfram notation of Rule 150. (Black squares denote
state 1, white squares denote state 0)

Behaviour of an ECA can be seen by its evolution figure. In
Fig. 2, evolution of an ECA composed of 15 cells with Rule 30
for 15 time steps.

3. Cellular Automata with Memory (CAM)
The next states of the cells depend on the previous states, in

addition to current states of the cells, in a CAM.



Figure 2. Evolution of an ECA composed of 31 cells with Rule
30 for 15 time steps.

The dynamics of the Fredkin’s CAM model for elementary
manner can be given by

αi(n+ 1) = f(αi−1(n), αi(n), αi+1(n), αi(n− 1)). (3)

Notice that, here f is not an elementary local rule (f : Q3 →
Q) since its domain is Q4 because of the term, αi(n− 1).

There are also different of CAM models [2][3][4]. One of
the CAM models has been suggested in our previous work[5].
The dynamics of that CAM model for elementary manner has
been given as follows

αi(n+ 1) = f(αi−1(n− x), αi(n− y), αi+1(n− z)) (4)

where x, y and z are non-negative integers.

4. Cellular Automata with Random
Memory (CARM)

CARM is a new CA model which has been recently pro-
posed [6]. In a CARM model, the next states of the cells de-
pend on randomly chosen previous states, instead of specified
previous states in the manner of CAM models.

A d-dimensional CARM can be defined with Zd, Q,

V = (i1, i2, . . . , is), i1, . . . , is ∈ Zd

and f : Qs → Q. Hence the dynamics can be given by

αi(n+ 1) = f

(
αi+i1(n− τ i+i1(n)), αi+i2(n− τi+i2(n)),

. . . , αi+is(n− τi+is(n))

)
(5)

where τi+i1(n), τi+i2(n), . . . , τi+is(n) are random integers
which are elements of set {0, 1, . . . , N}, N < ∞ for the time
step n. Equation 5 is valid for n ≥ N . For n < N , the system
works like a standard CA given in equation (1).

An elementary CARM (ECARM) can be defined with cel-
lular space Z, set of states Q = {0, 1}, neighbourhood V =
(−1, 0, 1), and a function f : Q3 → Q. Hence the dynamics of
an ECARM is given as follows

αi(n+ 1) = f

(
αi−1(n− τi−1(n)), αi(n− τi(n)),

αi+1(n− τi+1(n))

)
(6)

For an ECARM, let the N be 1 and the number of cells in
the ECARM beM . Therefore, τm form = 0, 1, . . . ,M−1 can
be considered as random variables with Bernoulli distribution.
Each random variable τm can be 1 and 0 with probabilities pm
and 1− pm, respectively. Hence that special ECARM is called,
Elementary CARM with minimal memory (ECARMM).

In Figs 3 and 4,evolutions of two ECARMMs composed
of 128 cells with same initial conditions and Rule 150 for 64
time steps are given. Figure 3 illustrates the evolution of the
ECARMM with parameter pm = 0.1, m = 0, 1, . . . , 127. Fig-
ure 4 illustrates the evolution of the ECARMM with parameter
pm = 0.3, m = 0, 1, . . . , 127.

Figure 3. Evolution of the ECARMM composed of 128 cells
with parameter pm = 0.1, m = 0, 1, . . . , 127 and Rule 150
for 64 time steps.

Figure 4. Evolution of the ECARMM composed of 128 cells
with parameter pm = 0.1, m = 0, 1, . . . , 127 and Rule 150
for 64 time steps.

5. Statistical Characteristics of an
ECARMM

FIPS-140-2[8] tests are using to verify the randomness of
random numbers. Poker test is one of the FIPS-140-2 tests that
measure the frequency of the certain 4-digits in the random se-
quences. To pass the poker test, frequency of the 16 possible
4-digits are closed to each other, namely uniform.

To apply the Poker test, there must be exist a sequence
20000 bits. The test divide the sequence to 5000 4-digit sub-
sequences, consecutively. Then, the frequency of the 16 pos-
sible 4-digit sub-sequence is calculated from the 5000 sub-
sequences. Let f(i), i = 0, 1, . . . , 15 denotes the frequency of
the decimal number i corresponding a possible 4-digit. Hence



the Poker test quality is calculated from below equation

X =
16

5000

15∑
i=0

f(i)2 − 5000 (7)

To pass the Poker Test for the sequence, X should be
2.16 < X < 46.17.

In this paper, to distinguish ECARMMs constructed with
different Bernoulli distribution, the Poker test quality measure
X is exploited. Let be defined two ECARMMs composed of
M cells with same initial conditions such that first ECARMM
has pm = P1, and second ECARMM has pm = P2 for
m = 0, 1, . . . ,M−1. Assume that the two ECARMMs evolves
for 20000 time steps. Therefore for any cell a sequence com-
posed of 20000 bits can be obtained. If the poker test is applied
that sequence, a X value will be obtained. Obviously for every
evolution starting from same initial conditions, the X values
are different even for the same cell of a same ECARMM. How-
ever, experiments show that average of the X values, obtained
from many evolutions for the same cell of same ECARMM con-
verges to a value, denoted by Xavr1 and Xavr2 for the first and
the second ECARMM, respectively. Furthermore, experiments
show that the average values Xavr1 and Xavr2 are different for
different P1 and P2 values. Hence, exploiting the average val-
ues, ECARMM constructed with different distribution can be
distinguished even if they have same initial conditions.

In Fig. 5, two Gaussian distributions fitting the X values
obtained from the 50 trials of evolutions with same initial con-
ditions for two ECARMMS with Rule 150 and values P1 = 0.1
and P2 = 0.3 are given. In every trial, ECARMMs are eval-
uated from same initial conditions along 500000 time steps.
Hence, the X values are obtained by applying Poker test to last
20000 states of 8th cells of the two ECARMMS. Considering
the Fig. 5, fitting curves can be easily distinguished.

Figure 5. The two Gaussian distributions fitting the X values
obtained from the 50 trials of evolutions with same initial con-
ditions for two ECARMMS with Rule 150 and values P1 = 0.1
and P2 = 0.3

6. Locally Coupled ECARMMs
In this paper, statistically behaviours of locally coupled

ECARMMs are analysed. For the easiest case, firstly, two lo-
cally coupled ECARMMs are considered. Figure 6 illustrates
the used coupling scheme.

More formally, the dynamics of 1st ECARMM and 2nd
ECARMM is given the following equations, respectively,

α1
i (n+ 1) = f(α2

i+1(n), α
1
i (n− τi(n)), α2

i−1(n)) (8)

α2
i (n+ 1) = f(α1

i+1(n), α
2
i (n− τi(n)), α1

i−1(n)) (9)

i−1 i i+1... ... ... ...

1st ECARMM (32 Cells) 2nd ECARMM (32 Cells)

i−1 i i+1 ...

Figure 6. Locally coupling scheme

where α1
i (n) and α2

i (n) denote the states of the cells sited at
i in 1th ECARMM and 2nd ECARMM, respectively, for time
step n.

The same tests mentioned for the two non-coupled ECAR-
MMs (Fig. 5) are applied to the two local coupled ECARMMs
with parameters P1 = 0.1 and P2 = 0.3. Figure 7 illus-
trates the Gaussian distributions fitting the X values for the two
ECARMMs. Considering the figures, the local coupling causes
the closer distributions than the non-coupling manner. In fact,
the two distributions are almost synchronized.

Figure 7. The Gaussian distributions fitting the X values for
the two locally coupled ECARMMs.

In Figs. 8 and 9, non-coupled and locally-coupled 9 ECAR-
MMs are given, respectively. The dynamics of locally coupled
ECARMMs are given in the following equations,

α1
i (n+ 1) = f(α9

i+1(n), α
1
i (n− τi(n)), α9

i−1(n)) (10)

α2
i (n+ 1) = f(α1

i+1(n), α
2
i (n− τi(n)), α1

i−1(n)) (11)

α3
i (n+ 1) = f(α2

i+1(n), α
3
i (n− τi(n)), α2

i−1(n)) (12)

...

α9
i (n+ 1) = f(α8

i+1(n), α
9
i (n− τi(n)), α8

i−1(n)). (13)

Hence, considering the Figs. 8 and 9, locally coupling causes
the closer distributions than the non-coupling manner, as well.

7. Conclusion
ECARMMs are easily hardware implementable and very

good candidates for TRBGs. In this paper, statistical character-
istics of ECARMMs with same parameters (initial conditions,
number of cells, rules, etc.) except probabilistic parameters
(P1, P2, . . . ) have been analysed. Furthermore, the ECARMMs
with different probabilistic parameters have been tried to distin-
guish. To distinguish the ECARMMs, well known statistical
test, Poker test has been used. The experiments show that the
Gauss distributions of fitting the X values obtaining from ap-
plied Poker tests to a specified cell (8th cell )of the ECARMMs
are very useful candidates to distinguish the ECARMMs.



Figure 8. Nine Gaussian distributions fitting the X values ob-
tained for non-coupled nine ECARMMs.

Figure 9. Nine Gaussian distributions fitting the X values ob-
tained for locally coupled nine ECARMMs.

Additionally, statistical characteristics of the ECARMMs
after locally coupling have been analysed. The experiments
show that locally coupling causes the closer distributions than
the non-coupling manner.
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