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Abstract

In this paper, the basin stability of single machine infinite

bus power systems with alpha-stable Levy type load fluc-

tuations are investigated over the parameter space of me-

chanical power and damping parameter. The probabilities

of returning to the stable equilibrium point are calculated

for different characteristic exponent and skewness parame-

ters of alpha-stable Levy noise to see the effect of impulsive

and asymmetric load fluctuations.

1. Introduction

Power system stability is an old problem [1, 2] and the in-

stability in power systems is one of the main reasons for the

many major blackouts. The dynamical behavior in power sys-

tems is therefore very important for stability in the sense of the

frequency and voltage and for synchronization in the sense of

rotor angle stability. Frequency stability is related with the ac-

tive power balance between the generation and the consump-

tion in the grid and the voltage stability is the ability of a power

system subject to a given disturbance to maintain acceptable

voltages at all buses [3]. Rotor angle stability is related to

the dynamics of generator rotor angles that is the ability of

interconnected synchronous machine of a power system to re-

main in synchronism [3]. The detection of the loss of angu-

lar stability is necessary for critical operation conditions since

the tripping of a line caused a loss of angular stability and a

loss of synchronism in the Turkish power system [4]. Today’s

power systems have a large number of interconnected genera-

tors and loads through transmission lines. With the increased of

the significant amounts of power from highly variable sources,

such as wind turbines and solar cells and a variable electricity

consumption due to electric vehicle charging, maintaining the

synchrony becomes more important [5]. Since the single ma-

chine infinite bus (SMIB) power system, where a synchronous

generator connected to an infinitely large node (infinite bus)

through a tranmission line, qualitatively exhibits the behavior

of multi−machines in a real power system it is well-suited and

practically common for stability analysis.

In [6] the relation between the bifurcation parameter and

power system stability has been discussed and it has been ob-

served that a small perturbation in the load causes loss of syn-

chronism of the generators with respect to the infinite bus.

Global instability in which most of all generators in a system

coherently lose synhronism with the remaning generators of

the system have been analyzed in [7]. The effects of dynamic

loads on the stability of power systems have been investigated

in [8] by the analysis of critical parameter. The nonlinear dy-

namic characteristics of a SMIB power system under a periodic

load disturbance have been studied in [9]. The SMIB power

system with a synchronous generator modeled by a classical

third-order differential equation have been introduced in [10]

and the effect of damping parameter on the nonlinear dynamics

of third-order SMIB have been investigated. The influences of

Gaussian white noise on the stability SMIB power system have

been investigated in [11]. In [12] the effects of stochastic ex-

citations in SMIB system have been studied by the p-moment

stability of rotor angle. The impact of load perturbations on the

rotor stability have been analyzed in [13] by modeling the evo-

lution of the probability density function as the Fokker-Planck

equation. In these former studies the stochastic fluctuations in

electrical power systems either at the loads or at the excitations

have been considered as Brownian process (Wiener process).

In [14] the electricity prices have been modelled as α-stable

Lévy process and in [15] the electricity market data have been

modeled by using the α-stable periodic autoregressive model

(PAR). Since the load has been considered as one of the main

factors in determining electricity prices because the sudden de-

mand or supply changes cause sharp spikes in electricity prices,

then we have assumed that the stochastic disturbances occurring

in power systems could be more realistically modeled by alpha-

stable (α-stable) Lévy process compared to the modelling by

Wiener process [16]. These α-stable Lévy type fluctuations are

characterized by non-Gaussian and heavy-tailed behaviour de-

fined by stable law [17].

In [16] we have investigated SMIB with α−stable Lévy

type load fluctuations and in this paper, we have extended the

rotor stability in terms of basin stability. The basin stability

is a measure of the basin’s volume which allows to quantify

the probability to converge to the equilibrium point after being

subjected to perturbations. The basin stability in determinis-

tic SMIB systems has been presented in [18, 19] and then the

Northern European power grid is considered as a case study. In

[20] the basin stability for deterministic SMIB system and four-

node network have been investigated. By introducing the notion

of stochastic basin of attraction, the basin stability is general-

ized in [21] and applied to the three-well potential perturbed by

two types of noises, Brownian motion and α-stable Lévy mo-

tion.

The paper is organized as follows. The stochastic SMIB

system with α-stable Lévy type load fluctuations is introduced

in Section 2 and the basin stability is analyzed in Section 3.



2. Stochastic Single Machine Infinite Bus
Power Systems

The rotational dynamics of the synchronous machine which

are called as swing equations in [3] are as:

δ̇ = w

Mẇ = −Dw + Pm − Pe (1)

where δ is the relative rotor angle of synchronous generator,

w is the rotor speed with respect to the synchronous reference,

Pm is the mechanical input power, Pe is the electrical power

output, M and D are the inertia and the damping coefficients,

respectively. Pe = Pmaxsin(δ) where the maximum output of

the synchronous generator is Pmax = E
′

EB/XT and E′∠δ is

the internal voltage of generator and EB∠0 is the infinite bus

voltage; XT is the total reactance of the transformer and the

line.

Figure 1. Phase portraits of deterministic SMIB system for

Pm = 0.5, D = 0.8.

Figure 2. Phase portraits of deterministic SMIB system for

Pm = 0.5, D = 0.36.
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Figure 3. Basin of attraction of the stable equilibrium point.

The maximum real power that can be transferred to the

infinite bus is fixed as Pmax =1 per unit (p.u.). Then

the system (1) has a stable equilibrium point (SEP) located

at [arcsin(Pm) 0] and a saddle point located at [π −

arcsin(Pm) 0]. The SEP is indicated by green circle and

saddle point is indicated by red circle in Figs. 1- 3. There are

no fixed points for Pm > 1 and all trajectories converge to the

unique rotating orbit. If the mechanical power is kept fixed as

Pm = 0.5 and when the damping parameter D is greater than

the critical damping level Dc all trajectories converge to the

SEP as shown in Fig. 1 whereas when the damping parameter

D is less than the critical damping level Dc the system has a

SEP and a stable limit cycle and depending on the initial condi-

tion the trajectories converge either to the SEP or to the stable

limit cycle (rotating orbit) as shown in Fig. 2.

Fig. 3 presents the basin of attraction for the parameters

Pm = 0.5 , D = 0.2 and M = 1. The basin of attraction of

SEP is colored in blue while the basin attraction of stable limit

cycle is colored white.

At the equilibrium point δ̇ = 0 the generator runs at a con-

stant speed which leads to a constant rotor angle. However,

when an imbalance between the mechanical power input and

the electrical power output occurs due to the disturbance such

as random load change, line tripping and loss of generator, the

synchronism is lost. As it was studied in [16] this imbalance

between the mechanical power input and the electrical power

output in the SMIB power system given in (1) is modeled by

PL(t) = σLα(t) where Lα(t) is the alpha-stable Lévy process

and σ is the noise intensity and by defining the state variable
[

x1 x2

]T
=

[

δ w
]T

then the Itô form of SDE can be written

as :

dX(t) = f(t,X(t))dt+ gdLα(t) (2)

f(t,X(t) =

[

x2

−Dx2 + Pm − sinx1

]

; g =

[

0
σ

]

(3)

and the increments of the Lévy process dLα(t) is α-stable ran-

dom variable [17].

There is no closed-form expression for the probability den-

sity function of α-stable distributions, however it can be cal-

culated by the inverse Fourier transform of the characteristic



function given as

φ(t) =

{

exp
{

jµt − γα|t|α
(

1 − jβsign(t) tan(απ

2
)
)}

if α 6= 1
exp

{

jµt − γ|t|
(

1 + jβ 2

π
sign(t) ln(απ

2
)
)}

if α = 1
(4)

The distribution α-stable random variable Sα (γ,β,µ) is char-

acterized by the four parameters: the characteristic exponent α
(0 < α ≤ 2) measures the impulsiveness, and the skewness

parameter β measures the symmetry of the distribution, where

β = 0 refers to symmetric distribution, β < 0 to left-skewed

distribution and β > 0 to right-skewed distribution, µ is lo-

cation parameter, and γ is scale parameter. The impulsiveness

increases with decreasing characteristic exponent “α” and the

tails of the corresponding distributions become heavier. As the

absolute value of the β increases, asymmetric behavior of the

distribution increases.

α-stable Lévy motion Lα(t) has the following properties

[22, 23]:

• Lα(0) = 0 almost surely (a.s.),

• Lα(t) has the independent and stationary increments

”dLα(t)”,

• dLα(t)
.
= Lα(t) − Lα(s) ∼ Sα((t − s)1/α, β, 0) for

any 0 ≤ s < t < ∞.

The Gaussian noise W (t) , dB
dt

is the formal derivative

of Wiener process (Brownian motion) B(t) [22] and the incre-

ments of the Wiener process ”dB(t)” is the special case of α-

stable Lèvy motion with α = 2, β = 0 “ i.e., S2(γ, 0, µ) =
N(µ, 2γ2) ” Normal (Gaussian) distribution with mean µ and

variance 2γ2 [17].

The Euler-Maruyama method given in [23, 24] is applied to

approximate the numerical solution of (2) as

Xti = Xti−1
+ f(ti−1,X(ti−1))τ + g△ Lτ

α,i (5)

where the increment of the Lévy process is α-stable ran-

dom variable △Lτ
α,i defined by △Lτ

α,i = Lα([ti−1, ti]) ∼

Sα(τ
1/α, β, µ) with τ = ti − ti−1 have been generated by the

method given in [23].

3. Basin Stability of Stochastic Single
Machine Infinite Bus Power System

For different types of disturbance such as short circuits,

load fluctuations or renewable generations the possibility of the

power system to reach the synchronous state can be easily de-

termined in terms of basin stability.

Basin stability: The criteria for the basin stability is quan-

tified by the percentage of initial values reaching a stable fixed

point after a given disturbance.

To estimate the basin stability the definition of return prob-

ability can be defined as follows :

Return probability: The probability of the system returning

to a stable fixed point is defined as the return probability.

To observe the effect of α-stable Lévy type load fluctua-

tions 400 initial conditions of (δ, w) are taken from [−π, π] ×
[−10, 10] and 1000 random realizations are carried out for each

initial condition and then the system is integrated long enough

and the percentage of the initial values converging to the SEP is

calculated.

In the absence load fluctuations the basin stability diagram

is obtained by varying the values of mechanical power Pm and

damping D as shown in Fig. 4. For the parameters of me-

chanical power and damping corresponding to the red points,
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Figure 4. Basin stability diagram for deterministic case.
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Figure 5. Return probability for Pm = 0.5 and D = 0.8.

all trajectories converge to the SEP with the return probabil-

ity one. For the parameters of mechanical power and damping

corresponding to the blue points, the trajectories converge to

the stable limit cycle (rotating orbit) with the return probabil-

ity zero. For example, for the parameters of mechanical and

damping corresponding to the yellow points 600 of the 1000 re-

alizations converge to the SEP. Consider the mechanical power

P=0.5 and damping D = 0.8. In the deterministic case all tra-

jectories converge to the SEP as observed previously. When the

power imbalance between the mechanical and electrical power

is modelled by Brownian motion (α = 2, β = 0) the return

probability is evaluated as 0.9965. However the return proba-

bility decreases with the decrease of characteristic exponent α
(increase of impulsiveness) for either symmetric or asymmetric

α-stable Lévy motion as shown in Fig. 5.

Fig. 6 shows the return probabilities when the mechani-

cal power P = 0.5 and damping D = 0.2 are selected. For

negative-skewed α-stable Lévy motion the return probability

increases with the decrease of characteristic exponent α (in-

crease of impulsiveness) and then for α = 1.2 return probability
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Figure 6. Return probability for Pm = 0.5 and D = 0.2.
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Figure 7. Basin stability diagram for α = 1.7 , β = 1.

decreases. For positive-skewed α-stable Lévy motion the return

probability decreases with the decrease of characteristic expo-

nent α and then for α = 1.2 the return probability increases.

Figs. 7- 9 present the basin stability diagram over the pa-

rameter space Pm−D with the parameter changes of character-

istic exponent α and skewness β. It can be seen from Figs. 7- 8

that asymmetric α-stable Lévy motion with α = 1.7 provides a

change in the basin stability diagram compared to the determin-

istic basin stability diagram. The return probability increases

for some specific parameter pair value of (Pm, D) and hence the

stability of the rotor angle is improved while for the other pa-

rameter pair values of (Pm, D) the return probability decreases.

Furthermore how the location of the basin stability over param-

eter space changes according to the skewness parameter β = 1
and β = −1 can be clearly seen from Figs. 7- 8. For α = 1.2
and β = 1 the region of stability for SEP becomes small, hence

the system is not able to withstand to the perturbations as shown

in Fig. 9.
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Figure 8. Basin stability diagram for α = 1.7 , β = −1.
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Figure 9. Basin stability diagram for α = 1.2 , β = 1.

4. Conclusion

In this paper, the fluctuations in the load of SMIB systems

have been modeled as α-stable Lévy process and the basin sta-

bility of the stable equilibrium point over parameter space of

mechanical power and damping have been investigated numeri-

cally. For some parameter pair of mechanical power and damp-

ing (Pm, D) the return probability decreases with the decrease

of characteristic exponent α (increase of impulsiveness) hence it

becomes more difficult to converge to the SEP. The synchronous

state’s stability deteriorates when α decreases. However for

some specific parameter pair value of mechanical power and

damping (Pm, D), the return probability can be improved by

adjusting the impulsiveness or asymmetry of fluctuations which

can be considered as the benefit of noise. As a future work,

the basin stability of multi-machine systems under Lévy type

perturbations will be investigated.
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