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Abstract

Automatic speaker verification (ASV) systems are known

to be highly vulnerable against spoofing attacks. Various

successful countermeasures have recently been proposed

to detect spoofing attacks originating from speech synthe-

sis (SS) and voice conversion (VC). However, detecting re-

play attacks, the most easily implementable spoofing attacks

against ASV systems, has gained less attention. Thus, in

this paper we present an experimental comparison of vari-

ous feature extraction techniques and classifiers for replay

attack detection. In total, six magnitude spectrum and three

phase spectrum based features are used for feature extrac-

tion. For classification in turn, four different techniques are

utilized. Experiments are conducted on recently released

ASVspoof 2017 replay attack detection challenge. Exper-

imental results reveals that magnitude spectrum features

considerably outperform phase based features independent

of the classifier. Comparative results using four different

classifiers indicate that i-vector cosine scoring yields lower

equal error rates (EERs) than other methods.

1. Introduction

Automatic speaker verification (ASV) is the task of auto-

matically accepting or rejecting an identity claim given a speech

signal [1]. Recent developments on ASV technology has led

to an increasing range of applications where ASV systems are

primarily used. However, it has independently been shown

and confirmed that ASV systems are highly vulnerable against

spoofing attacks [2, 3]. For any biometric person authentication

system, spoofing attack refers to an attack where a fraudster

masquarades herself in order to gain an illegitimate access to

the system [4]. There exists four main types of spoofing attacks

against ASV systems [5]: (i) mimicricy [6], (ii), speech synthe-

sis (SS) [7], (iii) voice conversion (VC) [8] and (iv) replay [9].

Among these four types of attacks, mimicricy is less likely to

occur since it requires a professional/talented mimicker. Speech

synthesis is the task of synthesizing a target speaker’s voice

given a text input whereas voice conversion aims at modifying

a source speaker’s voice towards target speaker’s voice. Replay

in turn, is the attack where target speaker’s prerecorded voice

sample is used for accessing to the sytem.

Spoofing countermeasures – determining whether a speech

signal is genuine or spoofed– have recently gained great inter-

est in order to protect ASV systems against spoofing attacks.

The studies related to anti-spoofing mostly focus on detecting

the spoofed signals generated using SS or VC attacks due to the
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Challenge organized as a special session in INTERSPEECH

2015 conference [10]. During the challenge, a database con-

sisting of genuine and synthetic utterances were shared with the

participants and they were asked to design countermeasures dis-

criminating genuine speech from spoofed speech generated us-

ing various SS and VC techniques. Various countermeasures

were proposed for synthetic speech detection and in general

phase features with Gaussian mixture model (GMM) classifier

were found to yield promising results [11, 12].

Countermeasures for detecting replay attacks in turn, has

been less studied in comparison to SS and VC attacks. In con-

trast to other spoofing attack types (mimicricy, SS and VC), re-

play attacks are the easiest to implement and do not require any

specific expertise or equipment. Therefore, they are most likely

to occur in practice. The vulnerability of ASV systems utiliz-

ing various speaker modeling techniques against replay attacks

have been studied in detail in [13]. In [14, 15], spectral ratio

statistics (e.g. spectral ratio, low-frequency ratio, modulation

index) were proposed as features for detecting the replay attacks

from far field recordings and it was found that low-frequency

ratio features yield perfect detection accuracy in matched chan-

nel case. However, in case of mismatched channel, the 7.32%
equal error rate (EER) was reported for replay attack detection.

In the same study, it was shown that frequency response of a

standard loudspeaker attenuates the low frequency region con-

siderably. Therefore low-frequency ratio features were found to

be useful for replay attack detection. However, most of the stud-

ies have generally reported their findings using a small number

of recording and playback conditions [14, 15, 9]. That was one

of the motivations behind the organizing ASVspoof 2017 Auto-

matic Speaker Verification Spoofing and Cuntermeasures Chal-

lenge1.

In this paper, we focus on replay attack detection using

ASVspoof 2017 database from both feature extraction and clas-

sification perspectives. To this end, we explore the perfor-

mances of magnitude and phase features on replay attack detec-

tion using four different and well-known classifiers. Six magni-

tude spectrum based features and three phase based features are

used in the experiments. The features are selected according to

their performances on synthetic and converted speech detection

as reported in [11, 16]. Thus in this study we aim at investi-

gating the generalization capability of the countermeasures for

both replay and SS/VC attacks. Though simple GMM classi-

fier trained using maximum likelihood criterion was found to

perform better for detecting SS and VC attacks [12], the perfor-

mance of different classifiers remain unknown for replay attack

detection. Therefore, in this study we compare four different

classifiers on ASVspoof 2017 database.

1http://www.spoofingchallenge.org
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Figure 1. Average long term spectra for genuine and replayed

speech signals of training set of ASVspoof 2017 database.

2. Feature Extraction Techniques

2.1. Magnitude Spectrum Features

In order to extract features, a speech signal is first divided

into short overlapping frames (20 ms frames with 10 ms overlap

used here). Then each frame is windowed with Hamming win-

dow and discrete Fourier transform (DFT) of each windowed

frame is computed. The DFT of a windowed frame x[n] can be

represented as:

X(ω) = |X(w)| ejθ(ω)
(1)

where |X(ω)| and θ(ω) are the magnitude and phase spectra of

the x[n] at frequency bin ω, respectively.

Figure 1 shows the average long term power spectra com-

puted over 1508 genuine and 1508 replayed speech utterances

using the training set of the ASVspoof 2017 database. From

the figure, it can be observed that at genuine and replayed sig-

nals show similar behaviour at low frequency region. How-

ever, at high frequency region they show different characteris-

tics. Therefore, intuitively magnitude spectrum based features

would be useful for replay attack detection. We briefly explain

the six different magnitude spectrum based features in the fol-

lowing.

2.1.1. Cepstrum

Simple cepstral coefficients (CEPs) are computed by ap-

plying discrete cosine transform (DCT) to the logarithm of the

power spectrum, |X(ω)|2. Previously they were used for syn-

thetic speech detection and found to give encouraging results

[11].

2.1.2. Filterbank Cepstral Coefficients

We consider four types of filterbank based cepstral coeffi-

cients extracted from the DFT power spectrum, |X(ω)|2. First,

the Mel-frequency cepstral coefficients (MFCCs) are extracted

by processing the power spectrum through a 30-channel trian-

gular filterbank spaced in Mel-scale. The MFCCs are obtained

by applying DCT to the logarithmic filterbank outputs. The

rectangular filter cepstral coefficients (RFCCs) are extracted

similar to MFCCs. However, in RFCCs, the filterbank con-

sisting of rectangular filters spaced in linear scale. Linear fre-

quency cepstral coefficients (LFCCs) in turn, are computed the

same way but the triangular filters are used rather than rectangu-

lar filters. Finally, for the inverted Mel-frequency cepstral coef-

ficients (IMFCCs) [17], triangular filters are spaced linearly on

the inverted Mel scale which puts higher emphasis to the higher

frequency region.

2.1.3. Constant Q Transform Cepstral Coefficients

Constant Q cepstral coefficients (CQCCs) are another mag-

nitude spectrum based features and they have recently been

used for synthetic speech detection with encouraging results on

ASVspoof 2015 database [18, 16]. Besides, it has been pro-

vided by the ASVspoof 2017 organizers as the baseline coun-

termeasure [19]. In contrast to other filterbank cepstral coeffi-

cients where features are extracted from DFT spectra, CQCCs

are extracted from wavelet-like perceptually motivated time-

frequency analysis known as constant Q transform (CQT) [20].

The features are extracted from the uniformly sampled CQT

power spectrum by following discrete cosine transform (DCT)

[18, 16].

2.2. Phase Based Features

2.2.1. Cosine Phase Features

The phase spectrum, θ(ω), computed from the DFT of the

speech frames is first unwrapped because of the discontinuouty.

Then the cosine function is applied to to the unwrapped phase

which yields a normalized phase spectrum within the range [-

1.0, 1.0]. Then DCT is applied to the normalized phase to obtain

cosine phase features. This feature is used in spoofing detection

in [21] and called as CosPhase features.

2.2.2. Modified Group Delay Function

Modified group delay function (MGDF) is computed from

the speech frame x[n] and defined as:

τ (ω) = sgn ×
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∣

α

(2)

where XR(ω) and XI(ω) are the real and imaginary parts of the

DFT of the windowed speech frame, x[n], at frequency bin ω.

YR(ω) and YI(ω) are the real and imaginary parts of the DFT of

nx[n]. S(ω) is the smoothed version of the magnitude spectrum

|X(ω)|. α and γ are the control parameters and they are both set

to 0.1. Features are extracted by applying DCT to the MGDF.

The so-called MODGD features are used in synthetic speech

detection in [21].

2.2.3. Relative Phase Shift Features

The relative phase shift (RPS) features [22] use the har-

monic modeling of the speech signal where each frame is rep-

resented as the sum of sinusoids, x[n] =
∑

k
A[k]cos(φk[n]).

Here, A[k] is the amplitude and φk[n] = 2πkF0n + θk is the

instantaneous phase of the kth harmonic. F0 is the fundamental

frequency and θk is the initial phase. The RPS value is defined

as the phase shift of the kth harmonic with respect to funda-

mental frequency. The RPS features are extracted from the RPS

values by first unwrapping the phase and then differentiating.

The differentiated phase values are integrated by Mel-filterbank

and they converted into features by applying DCT. RPS features

were found to give encouraging results on synthetic speech de-

tection [22, 11].



3. Replay Attack Detection

3.1. Gaussian Mixture Models

Gaussian mixture models (GMM) [23] is a popular and

well-known classification technique mostly used in speech pro-

cessing. In GMM, each class is represented as a weighted

sum of M multi-variate Gaussians, p(X|λ) =
∑M

i=1 wipi(x).
Here, wi, i = 1, . . . ,M are the mixture weights and pi(x) is

the D−variate Gaussian density function with mean vector µi

and covariance matrix Σi.

The parameters (wi, µi, Σi) of a GMM are estimated by

expectation maximization algorithm with maximum likelihood

criterion. For replay attack detection, a GMM is trained for

each class using the training data of the corresponding class.

During the test phase, given the GMMs λgenuine and λreplay,

and the feature vectors extracted from the test speech signal,

Y = {y1, . . . ,yT}, the likelihood ratio detection score is com-

puted as,

Λ(Y) = L(Y|λgenuine)− L(Y|λreplay) (3)

where, L(Y|λ) = 1
T

∑T

t=1 log p(yt|λ) is the average logarith-

mic likelihood of feature vectors Y given the GMM λ.

GMM is designated as the baseline classifier by the orga-

nizers of the ASVspoof 2017 challenge.

3.2. Support Vector Machines

Support vector machines (SVM) is a well-known binary

classifier successfully used in speaker and language recognition.

It tries to model the decision boundary between two classes as

a separating hyperplane by maximizing the margin. From the

replay attack detection point of view using SVM classifier, one

class corresponds to high-dimensional supervectors of genuine

class and other class corresponds to the supervectors of replay

class which are labeled as +1 and −1, respectively.

Two different supervector extraction methods are used for

the replay attack detection with SVM classifier: generalized lin-

ear discriminant sequence kernel (GLDS-SVM) [24] and local

binary patterns (LBP) [25]. In GLDS, the feature vectors are

mapped into a high-dimensional space by polynomial expan-

sion.

The LBP approach was first introduced for texture classi-

fication with promising results [25]. It is defined as the binary

comparisons of the pixel intensities between the center pixel and

its eight neighbourhood. For speech applications, LBP opera-

tor is applied to the feature matrix consisting of feature vectors

extracted from each frame rather than image [26]. The result-

ing matrix is called textrogram. The LBP supervector is com-

puted by first concatenating the histograms of the pixel values

within the each row in the textrogram. The histograms are then

normalised and their corresponding bin values are stacked ver-

tically to obtain the supervector.

3.3. i-vector Approach

i-vector approach has become state-of-the-art for speaker

recognition in the past years [27]. It extracts a low-dimensional

vector, w referred to an i-vector from a speech signal by fac-

torizing the GMM mean supervector µ as µ = m + Tw

[27]. Here, m is the mean supervector comes from the uni-

versal background model (UBM), T is a low-rank variability

matrix representing the total variability subspace and w is the

low-dimensional i-vector with standard normal prior distribu-

tion.

For replay attack detection, the i-vectors of training utter-

ances for both genuine and replay classes are extracted. The ex-

tracted i-vectors are pre-processed by applying within class co-

variance normalization (WCCN) [28]. For replay attack detec-

tion we aim at removing or normalizing the within-class (gen-

uine or replay) variation. Therefore WCCN transformation ma-

trix is computed from the training i-vectors of both classes (gen-

uine and replay). Normalized i-vectors are then projected onto

unit-sphere by applying length normalization [29].

Since there are multiple training i-vectors for each class

in ASVspoof 2017 database, we represent genuine and replay

classes with their average training i-vectors as wgenuine =

(1/K)
∑K

k=1 w
k
genuine, where wk

genuine is the kth training i-

vector of genuine class and K is the total number of training

utterances. Similarly, average training i-vector, wreplay is com-

puted for replay class.

In the detection step, given the i-vector extracted from the

test utterance, wtest we use cosine similarity as the detection

score and it is computed as:

score = w
T
genuinewtest −w

T
replaywtest. (4)

Since ‖wgenuine‖ = ‖wreplay‖ = ‖wtest‖ = 1 because of the

length normalization, it is omitted in (4).

4. Experimental Setup

4.1. Database

The ASVspoof 2017 database is used in the experiments

[19]. The database consists of three disjoint subsets: Train-

ing, Development and Evaluation. Training set includes 1508

genuine and 1508 spoofed (replayed) speech signals from 10

male speakers where replayed signals are generated with three

different replay configuration. The training set is used to train

classifiers and to estimate the hyperparameters of the counter-

measures. Development set consists of 760 genuine and 950

spoofed speech signals from a total of 8 speakers. The replay

devices used to generate development set are mostly different

from those used to generate training set. The development set

is used to optimise the countermeasures. Evaluation set in turn,

includes 1298 genuine and 12922 replayed utterances from 42

speakers. More details about the database and recording con-

dition can be found in Evaluation Plan of the ASVspoof 2017

challenge in [19].

4.2. Performance Criterion

Equal error rate (EER) is the primary performance criterion

for ASVspoof 2017 challenge [19]. EER corresponds to the er-

ror rate for the threshold where false alarm (Pfa) and miss rate

(Pmiss) are equal. Pfa is the ratio of the number of replayed

trials determined as genuine to the total number of replayed

trials. Similarly, Pmiss is the ratio of the number of genuine

trials determined as replayed to the total number of genuine tri-

als. The reported EERs are computed using the Bosaris toolkit2

which uses the receiver operating characteristics convex hull

(ROCHH) to estimate the EER.

4.3. Features and Classifiers

In the experiments, nine different features (six magnitude

spectrum and three phase based) described in Section 2 are

2https://sites.google.com/site/bosaristoolkit/



used. 19 features (including c0) and their first and second or-

der derivatives (dynamic coefficients) which yields a total of 57

dimensional features are used for all feature extraction meth-

ods. This configuration is selected based on the initial exper-

iments. Similarly, according to initial experiments on devel-

opment set, it was found that applying voice activity detection

(VAD) reduces the replay attack detection performance consid-

erably. Therefore, VAD is not applied in the experiments.

In the experiments, we use four different classification

methods: GMM, GLDS-SVM, LBP-SVM and i-vector. In

GMM method, for each class (genuine and replay) a GMM with

diagonal covariance matrices consisting of 512 Gaussian com-

ponents are trained with 10 EM iterations. For GLDS-SVM, the

polynomial expansion of order m = 3 is used. For LBP-SVM,

8-1 configuration, binary comparison of center pixel with its 8

neighbourhood, is used. For both GLDS and LBP, linear ker-

nel SVM is trained using LIBSVM package [30]. Universal

background model (UBM) with 512 Gaussians is trained using

the entire training set of the ASVspoof 2017 database for the

i-vector system. The same training data is used to train the i-

vector extractor (T-matrix) and 600 dimensional i-vectors are

extracted in the experiments.

5. Results

The experiments are first conducted on development set.

The EERs obtained with different features and classifiers on De-

velopment set are summarized in Table 1. From the results, we

find that in contrast to synthetic speech detection [11], magni-

tude features considerably outperform phase based features in

replay attack detection independent of the classifier. Among

four filterbank features, MFCC yields the highest EERs. An-

other interesting observation is that simple cepstral features

yields promising results and in some cases they are superior

to other features. For example they give approximately 27%
and 45% better performance than MFCC and CQCC features

with GMM classifier, respectively. For phase based features,

MODGD is superior to others on replay attack detection. In-

terestingly, the highest EERs are obtained with RPS features.

This is possibly because of the fact that RPS is calculated as

the phase shift of the harmonics with respect to fundamental

frequency. However, replay introduces convolutive distortion

on the original speech signal. Thus estimating the fundamental

frequency from convolutionally distorted speech becomes diffi-

cult.

From the classifier perspective, it can be seen that i-vector

modelling yields smaller EERs than other classifiers for the ma-

jority of the nine features (except for IMFCC). For IMFCC fea-

tures, GMM shows better replay attack detection performance

than SVM and i-vector classifiers. The smallest EER of 4.56%
is achieved with RFCC features using i-vector system, whereas

IMFCC features with GMM classifier gives the EER of 4.71%.

The last row of the Table 1, shows the EERs obtained by

applying score fusion to the all features for each classifier. It

can be observed that score fusion improves the performance for

GMM and i-vector systems. For GMM classifier, score fusion

yields approximately 15% performance improvement over the

best performing countermeasure (EER reduced from 4.71% to

4.01%). Whereas approximately 29% (EER 4.56% → 3.24%)

relative performance improvement is observed after appyling

score fusion to the i-vector countermeasures. Interestingly, for

GLDS and LBP SVM systems, score fusion does not bring any

improvements on the best performing systems.

Next, experiments are carried out on the Evaluation set of

Table 1. EERs (%) for different features and classifiers on de-

velopment set.

Classifier

Features GMM GLDS-SVM LBP-SVM i-vector

MFCC 10.34 13.66 18.98 9.71

LFCC 6.08 9.85 7.37 4.58

RFCC 6.91 6.57 7.93 4.56

IMFCC 4.71 12.02 17.43 6.73

CQCC 11.85 9.43 9.03 8.85

CEPS 8.14 11.57 8.55 4.60

MODGD 11.19 14.18 9.03 4.78

COSPHASE 25.95 23.99 17.10 11.90

RPS 43.36 40.06 39.91 41.26

Fusion 4.01 11.37 10.67 3.24

the ASVspoof 2017 database using GMM and i-vector systems.

The EERs for each individual features and their fusion are given

in Table 2. Similar to observations on development set, i-vector

system is superior to GMM classifier on Evaluation set except

for RPS features. CQCC features with i-vector system achieves

the smallest EER of 21.38% on the evaluation set. In con-

trast to findings on development set, score fusion does not bring

any performance improvement over the best performing system

(IMFCC for GMM and CQCC for i-vector). This is possibly

because the fusion weights were trained using the development

set scores. However, evaluation set includes spoofed utterances

generated using different replay configurations than the ones

used to generate development set.

Table 2. The results on evaluation set.

Classifier

Features GMM i-vector

MFCC 33.14 29.42

LFCC 33.18 27.00

RFCC 32.42 30.03

IMFCC 30.87 23.44

CQCC 32.27 21.38

CEPS 36.24 28.48

MODGD 36.65 26.95

COSPHASE 46.90 36.00

RPS 26.65 32.47

Fusion 30.51 24.20

6. Conclusions

In this paper, an extensive study with different feature ex-

traction and classification techniques have been performed for

replay attack detection to protect ASV systems. Experimen-

tal results indicate that magnitude features are more useful than

the phase features for detecting replay attacks in general. The

RFCC features which uses rectangular filters yields the best per-

formance on development set with i-vector system. However,

CQCC features were found to give the smallest EER in com-

parison to other eight different feature extraction methods on

evaluation set. It was observed that score fusion improves the

replay attack detection on development set but it does not bring

any performance improvement on evaluation set.
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