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Abstract

Forecasting of power generation is needed for accurate de-
sign and performance evaluation of solar energy systems
to associate demand and source side dynamics efficiently.
Since the power output values of solar energy systems are
significantly affected by the cell temperature, estimation of
cell temperature has gathered wide interest in recent years.
In this study, cell temperature values of the on-grid photo-
voltaic panels of a solar house placed in Anadolu University
İki Eylül Campus are estimated by using six different mod-
els. In addition, power output values of the system are fore-
casted with three different models by using the estimated
cell temperature values, measured outdoor parameters and
panel specifications. Therefore, the most accurate models
for cell temperature estimation and power forecasting are
determined according to the results of statistical test analy-
sis methods.

1. Introduction
With increasing concern about dependence on fossil fu-

els and environmental issues, alternative energy solutions have
come into prominence in recent years [1]. Since energy is one of
the basic factors of economic and social developments, it is cru-
cial to meet required energy demand efficiently to contribute to
the development of the countries. At that point, fossil fuels are
not sufficient due to their environmental disadvantages and lim-
ited lifetime [2]. In place of fossil fuels, solar energy is mostly
recommended to be used in electricity generation with its dura-
bility, abundance and cleanliness. Associated with the use of the
solar energy in power system applications, photovoltaic systems
(PV) are placed in appropriate regions to benefit from the sun
in the most efficient ways.

PV cell temperature is an important parameter that directly
affects the performance of solar cells. This temperature depends
on many parameters such as outdoor conditions, climatic loca-
tion of PV modules, type of PV cells and properties of materials
used for PV systems. Increase in PV cell temperature causes
open-circuit voltage to decrease significantly and short-circuit
current to increase slightly [3]. It is known that PV cell temper-
ature is the same with PV module temperature [4]. Therefore,
PV cell temperature can be used as an efficient input to forecast
power output value of a PV module on the basis of a single PV
cell.
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Undoubtedly, it is assumed that solar panels operate under
ideal conditions during the manufacturing process of PV panels.
However, this situation is not valid when dynamic change of the
outdoor parameters are considered. In addition, measurement of
the PV cell temperature is not accessible in many systems. Due
to these reasons, in literature, cell temperature estimation meth-
ods are presented to forecast power output values of the solar
energy systems. Standard model which considers only global
solar radiation and ambient temperature is developed in [5]. In
[4], Mattei models are presented to obtain cell temperature with
defining two different parametrizations of heat exchange coeffi-
cient. Skoplaki models are obtained in [6] by integrating wind
data in standard model on the basis of two different descriptions
of wind convection coefficient. In [7], Kurtz model is defined,
which does not consider PV specifications. The model only
considers outdoor parameters as global solar radiation, ambi-
ent temperature and wind speed. A simple emprical model pro-
posed in [8] is used and some constants are described depending
on PV technologies with Koehl model in [9]. In [10], Muzathik
model is developed as a function of wind speed, global solar
radiation and ambient temperature.

Accurate information on power generation of a PV system
is essential for planning and projecting of a solar system in dif-
ferent environmental conditions. With the help of forecasting
power generation, an efficient energy analysis can be achieved
to meet the required energy demand. Hence, power generation
forecasting methods have gathered wide interest in literature.
These methods are divided into three main groups as physical,
statistical and hybrid methods [11]. In physical models, output
power values are defined as a function of global solar radiation,
ambient temperature and some other outdoor parameters. In
addition to the meteorological parameters, solar cell properties
such as cell temperature plays an important role on the perfor-
mance evaluation of a PV system by using physical models.
As a second group, statistical models are based on the concept
of persistence or stochastic time series. Within the scope of
these models, artificial neural network (ANN) have been used.
In these methods, historical data about weather estimation and
environmental conditions are needed to train ANN and predict
power generation values of solar energy systems [12]. Finally,
hybrid models are described which combine two or more mod-
els to prevent disadvantages of a single model [13].

Among power generation forecasting models, physical mo-
dels are commonly used with the increasing technological de-
velopments in measurement of outdoor parameters and analysis
of solar panel specifications. Therefore, outdoor conditions and
solar cell properties should be defined clearly to forecast power
generation values. This detailed solar energy analysis helps us



Nomenclature

I Global solar radiation on PV module (W/m2) hw Wind convection coefficient (W/(m2K))
Tc Cell/module temperature (◦C) Vt Thermal voltage (V )
Ta Ambient temperature (◦C) Voc Open circuit voltage (V )
vw Local wind speed close to the module (m/s) Isc Short circuit current (A)
uPV Heat exchange coefficient for the total surface of

module (W ◦C−1m−2)
u0 Coefficient describing the effect of the radiation on

the module temperature (W ◦C−1m−2)
dVoc/dTcVoltage temperature coefficient (◦C−1) dIsc/dTc Current temperature coefficient (◦C−1)
β Temperature coefficient of maximal power of the so- Pm Maximum power of a PV module (W )

lar cells (◦C−1) Pm,cell Maximum power of a PV cell (W )
η Efficiency of the solar cells (unitless) Vm Maximum voltage(V )
u1 Cooling by the wind (Ws ◦C−1m−3) α Absorption coefficient of the solar cells (unitless)
Im Maximum current (A) rs Normalized resistance (unitless)
τ Transmittance of the cover system (unitless) voc Normalized voltage (unitless)
Rs Series resistance (Ω) γ Cell maximum power temperature coefficient (◦C−1)

to optimize system size and dynamics of a house. Along with
the estimation of cell temperature and forecasting of power gen-
eration may improve the accurate application of the PV systems
in future’s world.

2. Cell Temperature Estimation
There are many correlations that describe cell temperature

as a function of outdoor parameters as well as solar cell char-
acteristics defined by the manufacturers [14]. Cell temperature
significantly depends on global solar radiation on the surface of
solar panels. In addition, it is affected by many outdoor param-
eters such as wind speed, wind direction and ambient temper-
ature [15]. In this part of the study, cell temperature values of
the on-grid PV system of a solar house placed in Anadolu Uni-
versity İki Eylül Campus are estimated for five months by using
selected six different methods. The solar house built on campus
is shown in Fig. 1.

Fig. 1. Solar house placed in Anadolu University İki Eylül
Campus

2.1. Standard Model

The model only considers global solar radiation and am-
bient temperature. In this model, wind speed is not included
unlike the other considered models. The proposed model is:

Tc = Ta +
I

INOCT
(TNOCT − Ta,NOCT ) (1)

where TNOCT is the nominal operating cell temperature con-
sidered under nominal operating conditions of INOCT = 800
W/m2, Ta,NOCT = 20◦C and wind speed of 1 m/s [16].
The value of TNOCT is accepted as 45◦C depending on our PV
module’s datasheet.

2.2. Koehl Model

The model is developed by considering the energy balance
of a solar thermal collector defined in [8]. The cell temperature
estimation model is given as [9]:

Tc = Ta +
I

u0 + u1vw
(2)

where the constants of u0 and u1 are the coefficients describ-
ing, respectively, the effect of global solar radiation on module
temperature and cooling by the wind. These parameters are se-
lected according to the specifications defined in [9] depending
on PV technologies.

2.3. Mattei Model

The model is developed by confirming an energy balance on
PV module, which neglects the temperature difference between
PV cells and the cover.

The effect of temperature on PV cell efficiency (η) can be
described in many ways. One of the most important models that
shows the effect of temperature on η is defined as:

η = ηSTC
(
1− β (Tc − TSTC)

)
(3)

where ηSTC is the reference module efficiency and β is the tem-
perature coefficient of maximal power for the PV module. In
addition, the energy balance can be described as:

α · τ · I = η · I + uPV (Tc − Ta) . (4)

If the expression in (3) is included in (4), the proposed model is
obtained as:

Tc =
uPV (vw)Ta + I · (τ · α− ηSTC (1 + βSTC · TSTC))

uPV (vw)− βSTC · ηSTC · I
(5)

where the expression of the heat exchange coefficient for the
total surface of the module (uPV ) is defined as:

uPV (vw) = 24.1 + 2.9 vw . (6)

In (5), βSTC is defined as temperature coefficient of maximal
power under standard test conditions of ISTC = 1000 W/m2,



TSTC = 25◦C and AM = 1.5. The values fo ηSTC and
βSTC are obtained from the panel’s datasheet. In addition, τ ·α
is accepted as 0.81 as in [9].

2.4. Skoplaki Model

In addition to global solar radiation and ambient tempera-
ture, the proposed model considers wind speed and solar cell
properties such as efficiency, temperature coefficient of maxi-
mal power, transmittance of the cover system and absorption
coefficient of the cells [6]. The developed model is defined as:

Tc =
Ta + I

INOCT
(TNOCT − Ta,NOCT )

hw,NOCT

hw(v)
·
(
1− ηSTC

τ ·α (1 + βSTC · TSTC)
)

1− βSTC · ηSTC
τ · α

(
I

INOCT

)(
hw,NOCT
hw(v)

)
(TNOCT − Ta,NOCT )

(7)
where ηSTC and βSTC are defined as in Mattei model. Also,
hw,NOCT is the wind convection coefficient of wind speed un-
der normal operating conditions. The τ · α value in (7) accepted
as 0.9 as in [6]. The wind convection coefficient (hw) is defined
as:

hw = 5.7 + 3.8 vw (8)
where vw is the local wind speed close to the module.

2.5. Muzathik Model

The proposed model derives PV cell temperature as a func-
tion of global solar radiation, ambient temperature and wind
speed. However, the model does not consider the PV technol-
ogy of the considered solar panels. Hence, cell temperature is
defined as [10]:

Tc = 0.943 · Ta + 0.0195 · I − 1.528 · vw + 0.3529 . (9)

2.6. Kurtz Model

Similar to (9), the proposed model does not include material
characteristics of the PV panels. Instead, it is a parametrization
of global solar radiation, ambient temperature and wind speed,
which is defined as [7]:

Tc = Ta + I · exp (−3.473− 0.0594 vw) . (10)

3. Power Output Forecasting
Solar panel manufacturers provide maximum power values

of solar panels in datasheets by considering ideal conditions.
However, these conditions are not stable in real time applica-
tions. Therefore, solar panel specifications should be defined
depending on unsteady outdoor parameters and, actual power
generation values must be analyzed in detail. In this part of the
study, three different power output forecasting models are per-
formed by using the estimated cell temperature values. These
values are gathered from the model that has the highest accuracy
according to the measured values.

3.1. Model 1

Since panel datasheets show theoretical short-circuit cur-
rent and open-circuit voltage parameters, these values are found
as [17]:

Isc =
I∗sc
I∗
I

(
1 + (Tc − T ∗

c )
dIsc
dTc

)
, (11)

Voc = V ∗
oc + (Tc − T ∗

c )
dVoc
dTc

+ Vt ln

(
I

I∗

)
(12)

where I∗ and T ∗
c are, respectively, the reference global solar

radiation on solar panels and cell temperature values. Tc is esti-
mated by using considered methods. The series resistance, Rs

is found as 0.0069 Ω according to the panel specifications given
by solar manufacturers. The maximum power point is defined
as:

Pm,cell = VmIm (13)

where Vm and Im values are found:

Vm = Voc

(
1− b

νoc
ln a− rs

(
1− a−b

))
, (14)

Im = Isc
(

1− a−b
)
. (15)

In (14) and (15), a and b coefficients are defined by the follow-
ing relationships:

a = νoc + 1− 2vocrs , b =
a

1 + a
(16)

where voc = Voc/Vt and rs = Rs/ (Voc/Isc). After finding
Pm,cell, Pm of a single PV module is found by considering cell
number of the PV module, which is 60.

3.2. Model 2

The model in [18] is performed by considering PV-Trombe
wall (PV-TW) assisted with DC fan. The proposed power fore-
casting model is defined as:

Pm = ηSTC ·A · I
(
1− 0.0045 (Tc − 25)

)
(17)

where A is the surface area of the PV module exposed to the
interlayer and ηSTC is the reference module efficiency. The
value of ηSTC is accepted as 0.1598 according to the panel’s
datasheet.

3.3. Model 3

The model calculates the maximum power on the basis of a
single cell and, it is described as [19]:

Pm,cell = P ∗
m,cell ·

I

I∗
· (1 + γ (Tc − 25)) (18)

where P ∗
m,cell is the cell maximum reference power and γ is

the cell maximum power temperature coefficient. The value
of γ ranges from −0.005 to 0.003◦C−1 in crystalline silicon.
Since the parameter is not provided routinely by the AIL cer-
tificate of calibration of the module, the value of γ is accepted
as −0.0035◦C−1 as in [20]. Similar to Model 1, Pm,cell is
multiplied by 60 to calculate Pm.

4. Simulation and Results
Cell temperature values which are estimated by using six

different models are compared with the measured cell temper-
ature values as shown in Fig. 2. In addition, statistical analysis
methods of Root Mean Square Error (RMSE), Mean Bias Er-
ror (MBE) and Mean Absolute Bias Error (MABE) are used
to evaluate the performance of the considered cell temperature
estimation methods, which are described as:

RMSE =

√√√√ 1

n

n∑
i=1

(ci −mi)
2 , (19)

MBE =
1

n

n∑
i=1

(ci −mi) , (20)

MABE =
1

n

n∑
i=1

(|ci −mi|) , (21)



Fig. 2. Comparison of different cell temperature estimation models

where ci is the ith calculated cell temperature data,mi is the ith

measured cell temperature data and n is the number of data. The
accuracy of the cell temperature estimation methods is shown
in Table 1. The results show that Skoplaki model has the high-
est accuracy with the lowest RMSE, MBE and MABE values.
From the point of accuracy, it is analyzed that Skoplaki model is
followed by Koehl model in terms of RMSE and MABE values.
When MBE values are considered, Muzathik model is the sec-
ond model that leads the highest accuracy after Skoplaki model.
In addition, Muzathik model is the only model that gives un-
derestimation with the result of negative MBE values among
models. Finally, Table 1 indicates that Standard model, which
is the only model that does not consider wind speed among the
considered models, has the lowest accuracy.

Table 1. Accuracy of the cell temperature estimation methods

Model Name RMSE MBE MABE
Standard Model 4.5730 3.4378 3.4448
Koehl Model 2.3829 1.9520 2.0086
Mattei Model 2.5647 2.1248 2.1616
Skoplaki Model 2.2349 1.0943 1.8188
Muzathik Model 3.0926 -1.4297 2.3718
Kurzt Model 3.3401 2.7028 2.7164

Since Skoplaki model has the highest accuracy among the
considered cell temperature methods, the cell temperature val-
ues estimated by this model are used to forecast power output
values. For this purpose, three different models are selected to
perform for four months of 2017. These forecasted power out-
put values are compared with the measured power output values
of the PV system in Fig 3.

The forecasted power output values based on the cell tem-
perature, global solar radiation and the specifications of the PV
modules are evaluated by using two statistical analysis methods
as Normalized Mean Absolute Error (WMAE%) and Weighted
Mean Absolute Error (WMAE%). These analysis methods are
described as:

WMAE% =

N∑
h=1

|Pm,h − Pf,h|

N∑
h=1

Pm,h

· 100 (22)

NMAE% =
1

N

N∑
h=1

|Pm,h − Pf,h|
CN

· 100 , (23)

where Pm,h is the power measured in the hour, Pf,h is the
power forecasted in the hour, CN is the net capacity of the plant
and N is the number of daylight hours. Table 2 shows the ac-
curacy of the power output forecasting methods. According to
this table, Model 1 has the highest accuracy among the consid-
ered models because it has minimum NMAE% and WMAE%

values. Unlike Model 1, Model 3 has the maximum NMAE%

and WMAE% values, which results in the lowest accuracy.

Table 2. Accuracy of the power output forecasting methods

NMAE% WMAE%

Model 1 4.6394 12.3645
Model 2 4.7363 12.6229
Model 3 4.8816 13.0102

5. Conclusion
In this study, cell temperature values of a solar house placed

in Anadolu University İki Eylül Campus are estimated by using
selected methods. The results show that Skoplaki model has the
highest accuracy. Estimated cell temperature values of Skoplaki
model are used in three different power forecasting methods
with global solar radiation, ambient temperature and panel spec-
ifications. The statistical analysis methods indicate that Model
1 gives the best results among the considered models. There-
fore, it is concluded that these models are recommended to be
performed in any location that has similar climatic conditions
with the considered region.
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