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Abstract 
 

In this paper, effect of sampling rate on the performance of 
transmitter identification system using transient-based RF 
fingerprints is considered. Two different existing RF 
fingerprinting techniques have been employed to investigate 
the performance of a transmitter identification system by 
using experimental data collected at a high sampling rate. 
Decimation was carried out to analyze the effect of lower 
sampling rates. It has been shown that transient-based RF 
fingerprinting methods can be effectively used for 
identification of wireless transmitters at low sampling rates.  

 
1. Introduction 

 
RF fingerprints are defined as the unique characteristics of 

transmitters caused by their radio circuitry. These unique 
characteristics can be employed for the identification of wireless 
devices. RF fingerprinting methods have been employed for 
identification of several wireless devices, e.g. VHF transmitters 
[1]-[3], WiFi [4]-[8] and UMTS [9], [10] transceivers. An 
overview of transmitter identification systems based on RF 
fingerprinting is presented in [11]. 

The main stages of an identification system based on RF 
fingerprinting are defined as signal detection, feature extraction, 
and classification. After detecting identification signals, such as 
transients and preambles, from the transmitted signals, 
distinctive features are extracted from the detected signals and 
employed to classify transmitters. The identification systems 
using steady state characteristics such as preambles can exploit 
the prior information about the known signals. On the other 
hand, the identification systems using transient characteristics 
have the advantage that the unintended transients are transmitted 
before settling down to a steady state condition for all types of 
wireless devices. In [9], transient-based RF fingerprinting 
methods are claimed to require extremely high sampling rates to 
extract features from transient signals without providing 
experimental or simulation results. This has been regarded as a 
major disadvantage of the transient based RF fingerprinting 
methods in [10], [12], [13]. In [12], transient detection stage, as 
well as feature extraction stage, is claimed to require high 
sampling rate due to its relatively small duration compared to 
steady state signal regions. However, none of these works deals 
with verifying the claim about the high sampling rate 
requirement of transient based RF fingerprinting methods. 

In this paper, effect of sampling rate on the classification 
performance of a transient-based transmitter identification 

system is investigated. For this purpose, two different existing 
RF fingerprinting methods, which are based on instantaneous 
amplitude responses of turn-on transient signals [4], have been 
employed.  It has been shown through experimental data that, 
contrary to the claim in the literature, high sampling rate is not a 
requirement to identify wireless transmitters through transient-
based RF fingerprinting. 

The organization of the paper is as follows: In Section 2, a 
brief description of transmitter identification system using 
transient based RF fingerprints is presented. In Section 3, 
decimation process applied to experimental data is explained. 
Performance evaluation results of the transient based RF 
fingerprinting method at low sampling rates is presented in 
Section 4. Our comments on the effect of sampling rate on 
transient based RF fingerprinting are given in Section 5. Finally, 
section 6 concludes the paper. 

 
2. Transmitter Identification Through Transient 

Based RF Fingerprinting 
 

The transmitter identification procedure using transient based 
RF fingerprints is depicted in Fig.1. Sampled baseband signals 
including transients following channel noise are applied to a 
detector to find the transient signals. In this study, we used a 
Bayesian ramp detector [14], to obtain transient signals. This 
algorithm estimates the transient starting points based on a 
likelihood function constructed under Gaussian noise 
assumption. In [15], transient detection performance using this 
detector was evaluated at different SNR levels and it was 
demonstrated that the Bayesian ramp detector can be used with a 
high accuracy for the SNR levels above 10 dB. In the same 
study, the authors also investigated the effect of detection errors 
on overall identification system performance for varying SNRs, 
where SNR levels of transient signals were calculated using the 
approximation in [16].  

In feature extraction stage, we used instantaneous amplitude 
responses (Amplitude features) [4] and their dimensionally 
reduced forms obtained by using principal component analysis 
(PCA features) [4]. At the last stage, a probabilistic neural 
network (PNN) classifier was used to classify the transmitters by 
using the extracted features. PNN classifiers have been widely 
used for classification of transmitters [2], [4], [7], [15]. In [7], 
the performance of the PNN classifier was compared to a  
k-nearest neighbor (kNN) classifier in a transmitter 
classification problem and observed that the PNN classifier 
outperforms the kNN classifier for varying SNR levels and 
training sample sizes. 
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Fig. 1. The procedure for transmitter identification through 
transient based RF fingerprinting. 

 
3. Decimation Process 

 
Since the main objective of this work is to evaluate the 

impact of sampling rate on classification performance, sampling 
rates of data sequences were reduced in the identification 
process. Decimation is generally defined as the process of low-
pass filtering followed by downsampling [17], as depicted in  
Fig. 2.  
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Fig. 2. Block diagram of the decimation process. 
 

Sampling rate of the filtered signal can be reduced as [18] 
  

 ( ) ( )z n y nM=  (1) 

 
for an integer downsampling factor .M  ( )z n  represents the  

signal at the reduced sampling rate, which consists of every 
thM samples of the filtered signal. After decimation, sampling 

rate is given by  
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where sf and sf ′ denote sampling rates before and after 

downsampling, respectively.  
A sixth-order low-pass Butterworth filter with a cutoff 

frequency of  2sf ′  was employed to avoid aliasing. For the 

sampling rates higher than the Nyquist, this selection of cut off 
frequency also provides preservation of out-of-band frequency 
components, i.e. spectral components outside the transmission 
band, if exist. 

The experimental data consist of 100 transmissions from 
eight different IEEE 802.11b WiFi transmitters. The initial 
sampling rate of the experimental data is 5 GSamples/s. The 
downsampling factors and corresponding sampling rates tested 
in this work is given in Table 1. 

In this study, transient duration is taken as approximately 
200ns since this value was found experimentally for WiFi 
signals in [4]. Therefore, transients are taken as the signal parts 
of  this  length following the estimated transients starting points 

 
Table 1. Downsampling factors and corresponding sampling 
rates 

 

Downsampling 

factor ( )M  
2 5 10 25 50 100 180 

sf ′  2.5GS/s 1GS/s 500MS/s 200MS/s 100MS/s 50MS/s 28MS/s
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Fig. 3. Instantaneous amplitudes of transients at sampling rates 
of (a) 5 GSamples/s and (b) 100MSamples/s from 8 transmitters. 
100 transients are shown for each transmitter. 
 
by using the Bayesian ramp detector. Transient signals at 
sampling rate of 5 GSamples/s are demonstrated in Fig. 3(a). 
There are 100 transients for each of eight transmitters. In Fig. 
3(b), the same transients are shown after decimation process in 
which downsampling factor was taken as 50, i.e. sampling rate 
was reduced to 100 MSamples/s. As seen from this figure the 
impact of the decimation process on instantaneous amplitude 
responses is not substantial. Therefore, the performance of the 
classifier based on these responses can be expected to be 
approximately constant.  

The bandwidth of the baseband data from 802.11.b WiFi 
transmitters is 22 MHz in the range of [-11MHz, 11MHz]. 
Minimum sampling rate was set to be about 28MS/s as seen in 
Table 1. This value was chosen to provide the minimum 
practical sampling rate, which is 2.5 times the maximum 
frequency component of 11 MHZ in the signal. 
 

4. Performance Evaluation 
 

In order to evaluate the classification performance of the 
transient-based RF fingerprinting method at low sampling rates, 
two test scenarios were considered. In the first test scenario, 
sampling rate reduction was carried out after detecting transient 
signals at the initial high sampling rate. In the second test 
scenario, whole identification process was performed at the 
reduced sampling rates. 



In each test scenario, 500 trials were performed to evaluate 
the classification performance for each sampling rate. Training 
and test vectors were picked up randomly in each trial to 
eliminate any selection bias. In each trial, 20 of 100 transients 
were used as training set. This selection was used since, for a 
transmitter classification problem in [7], it was demonstrated 
that increasing the training sample size over 20% of total sample 
size does not improve the classification performance.  

 
4.1. Test Scenario 1: Decimating Transient Signals 

 
In Test Scenario 1, the main objective is to evaluate the effect 

of sampling rate on features extracted from the transmitter turn-
on transient signals. Therefore, transient detection was 
performed at the initial high sampling rate and then sampling 
rate of the detected transient signals was reduced prior to feature 
extraction. This test scenario is shown in the block diagram in 
Fig. 4.  
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Fig. 4. Test Scenario 1: Decimating transient signals. 
 
4.2. Test Scenario 2: Decimating Baseband Signals 

 
Contrary to Test Scenario 1, overall performance of the 

transmitter identification system using transient based RF 
fingerprints was tested for low sampling rates in Test Scenario 
2.  As shown in the block diagram in Fig. 5, whole identification 
process, including the transient detection, was performed at the 
reduced sampling rates.  
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Fig. 5. Test Scenario 2: Decimating baseband signals. 
 

4.3. Classification Test Results 
 
Fig. 6 and Fig. 7 show classification performance evaluation 

test results over 500 Monte Carlo trials for Amplitude and PCA 
features, respectively, obtained at different sampling rates.  

For Test Scenario 1, average classification accuracies for 
Amplitude and PCA features are represented by dashed lines 
with circle markers in Fig. 6(a) and Fig. 7(a), respectively. As 
seen from these figures, classification accuracy of each feature 
set remains almost constant at about 98% at the tested sampling 
rates between 28 MSamples/s and 5 GSamples/s. Correct 
classification rates of Amplitude and PCA features in Test 
Scenario 1 are also summarized by boxplot in Fig. 6(b) and Fig. 
7(b), respectively. The notches of the boxes in these figure 
indicate the median values whereas the lower and upper edges 
of the boxes show the 25th and 75th percentiles, respectively. 

The dashed lines extend to the most extreme values of correct 
classification rates. As seen from these figures, variations in 
median, minimum, 25th and 75th percentiles values of 
classification results are also small. Test Scenario 1 results show 
that sampling rate almost does not affect the discrimination 
capability of the tested transient-based features. 

For Test Scenario 2, average classification accuracies are 
shown by solid lines in Fig. 6(a) and Fig. 7(a). Classification 
performances of the features in Test Scenario 2 are also 
demonstrated by boxplot in Fig. 6(c) and Fig. 7(c). Compared to 
Test Scenario 1 results, the variations in descriptive statistics, 
such as mean, median, and percentiles, of classification accuracy 
increase slightly as the sampling rate changes. This is caused by 
the effect of sampling rate on transient detection algorithm. Note 
that maximum variation in average classification accuracy of 
each feature is less than 1% when the sampling rate changes. 
Besides, when comparing the classification results at the same 
sampling rate in each test scenario, it is observed that maximum 
performance loss caused by the effect of sampling rate on 
transient detection is below 1% for both features. Test Scenario 
2 results demonstrate that the Bayesian ramp detector performs 
well at low sampling rates.  

From Fig. 6(a) and Fig. 7(a), the average classification 
accuracies of Amplitude and PCA features at all sampling rates 
were obtained over 97.7% and 97.5% in Test Scenario 1 and 
Test Scenario 2, respectively. Overall, the results in both cases 
indicate that the transient-based RF fingerprinting method 
considered in this work can be effectively used for identification 
of WiFi transmitters at low sampling rates. 

In addition, when comparing the results in Fig. 6 and Fig. 7, 
it is clear that dimension reduction for Amplitude features using 
PCA does not cause any performance loss. Actually, this result 
was obtained in [4] at a high sampling rate. In this study, we 
showed that the result is also valid for lower sampling rates.  

 
5. Comments 

 
The required bandwidth to capture a radio transient signal does 
not need to be larger than the transmission bandwidth of the 
radio, therefore there is no need to sample at rates higher than 
the Nyquist. The reason for this is that all practical radios are 
implemented using output filters with high roll-off to avoid 
interference into adjacent channels to comply with regulatory 
bodies’ emission requirements. These filters have high rejection 
(>40dB) outside the transmission band, i.e. any spectral 
component outside the band will be highly attenuated, therefore 
will eliminate the need for unnecessarily high sampling rates 
and sampling rates of about 2.5 times the channel bandwidth 
will suffice in practice. This claim was supported by the test 
results obtained in this paper.  We believe that high sampling 
rates used in transient based techniques reported in the existing 
literature are not a requirement but it is simply due to the 
convenience of the use of sampling scopes in these works. 
Sampling scopes are commonly available in every electronics 
labs nowadays and they are used for various data acquisition 
projects. However, oscilloscopes, by their nature, do not include 
a down conversion stage as in radio receivers or spectrum 
analyzers and they directly sample at carrier frequencies, so the 
sampling rates are higher than the required rates. However, this 
is not a limitation of the transient based techniques; it is just an 
artifact of the measurement setup. 
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Fig. 6. Performance evaluation test results for Amplitude 
features at different sampling rates given in logarithmic scale: 
(a) Average classification accuracies for Test Scenario 1 (dashed 
lines with circle markers) and Test Scenario 2 (solid lines). 
Boxplot of the classification results for (b) Test Scenario 1 and 
(c) Test Scenario 2.  
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Fig. 7. Performance evaluation test results for PCA features at 
different sampling rates given in logarithmic scale: (a) Average 
classification accuracies for Test Scenario 1 (dashed lines with 
circle markers) and Test Scenario 2 (solid lines). Boxplot of the 
classification results for (b) Test Scenario 1 and (c) Test 
Scenario 2.  
 
 



6. Conclusions 
 

In this work, it has been shown through experimental data 
that, contrary to the claim in the literature, high sampling rate is 
not a requirement to detect transmitter turn-on transient signals 
and extract discriminative features from these signals for the 
purpose of transmitter identification. This result is important in 
terms of practical implementation of these methods, since 
today’s low cost receivers operate at low sampling rates. In a 
future work, the transient based RF fingerprinting approach will 
be tested with experimental data collected directly from low cost 
receivers at low sampling rates and potential distorting effects of 
these receivers on RF fingerprinting performance will be 
considered.  
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