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Abstract 
 
This work presents a novel three-dimensional calculation of 
self- and mutual inductances of a power transformer, based 
on a 3D magnetostatic integral equations approach and 
point matching. Influence of a ferromagnetic core is 
modeled with a constant magnetization over an element. In 
order to avoid the well-known cancellation error in 
calculation of the magnetic field inside the closed 
ferromagnetic core of a transformer, an additional line 
integral equation of magnetic field in a closed path, which is 
explicitly enforced to match magnetomotive force, is 
appended to the procedure. Overdetermined system of 
linear equations is assembled by point matching and solved 
by the least squares method. Results of the calculation for 
high voltage windings of a power transformer are in good 
agreement with results obtained by commercial FEM 
package Ansys Maxwell. 

 
1. Introduction 

 
The calculation of self- and mutual inductances of power 
transformers is a subject of many studies throughout the years. 
Classical approach to inductance calculation is to use 
commercial packages based on the well-established FEM 
procedures [1], [2]. Application of FEM demands discretization 
of the entire domain. In transformer design phase, it is necessary 
to calculate transformer inductances fast and with sufficient 
accuracy. In order to solve a problem using FEM, remeshing is 
required for each change in geometry, which is time consuming 
[2]. 
Therefore, another approach used is to employ in-house 
developed codes especially designed for transformers [3], [4]. 
Magnetostatic moment method is a promising approach, which 
can be used in calculating inductances, since it only requires 
meshing of a ferromagnetic core of a transformer. 
Ferromagnetic core is meshed into uniformly magnetized 
prisms. Application of the magnetostatic moment method 
coupled with the reluctance network method to such problems in 
current transformer is described in [4]. 
In this paper, a novel method based on the magnetostatic 
moment method is used to calculate inductances in a power 
transformer. Since the transformer core forms a closed magnetic 
circuit, for highly permeable ferromagnetic materials 
cancellation error occurs in calculation of the magnetic field 
strength inside the core [2], [5].  In order to resolve this 
problem, an additional line integral equation of the magnetic 
field over a closed path through the core, which is explicitly 

enforced to match the magnetomotive force, is appended to the 
procedure. 
In the following sections, the method is described and applied to 
calculation of solving self- and mutual inductances of a power 
transformer. 
 

2. Basic theory 
 
A conducting ring with a rectangular cross-section with 

uniform current density J is wound around a 
ferromagnetic core according to Fig. 1.  

 

 
The magnetic field at an arbitrary observation point r


 is 

 ( ) ( ) ( ),e cH r H r H r= +
   

 (1) 

where ( )eH r
 

is the magnetic field due to a circular 

conductor with current density J, calculated directly from 
the Biot-Savart law 
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and ( )cH r
 

 is the contribution of the ferromagnetic core.  

The core is subdivided into nc uniformly magnetized 
elements and the total contribution of the core is 
calculated by superposition of contributions of each 
element of the core.   

In order to find the unknown magnetization of each 
element of the iron core, it is necessary to solve a 
magnetostatic problem governed by the following 
equations: 

 0,B∇ ⋅ =


 (3) 

μ0 μ μ0

JJ

 
Fig. 1.  Conducting ring and ferromagnetic core 



 ( )0 .B H Mμ= +
  

 (4) 

 
Solution in the form of volume and surface integrals is 
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For a uniformly magnetized prism, (5) is reduced to 
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Surface integral in (6) can be analytically evaluated for an 
arbitrary polyhedron [6]. In this paper, the iron core is 
discretized into rectangular parallelepipeds, where point 
C is at the center of element and O is an observation point 
(Fig. 2) 
In (6) ( )rT


is a [3x3] matrix  
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Diagonal element Txx in ( )rT


matrix is [7] 

1 11 1 1 1

2 2 2 2 2 2
1 1 1 1 2 2 1 1

1 12 1 2 1

2 2 2 2 2 2
1 1 2 1 2 2 2 1

1 11 2 1 2

2 2 2 2 2 2
1 1 1 2 2 2 1 2

1 2 2

2 2 2
1 1 2 2

1
(tan ( ) tan ( )

4

     tan ( ) tan ( )

     tan ( ) tan ( )

     tan ( ) ta

xx

y z y z
T

x x y z x x y z

y z y z

x x y z x x y z

y z y z

x x y z x x y z

y z

x x y z

π
− −

− −

− −

−

= −
+ + + +

− +
+ + + +

− +
+ + + +

+ −
+ +

1 2 2

2 2 2
2 2 2 2

n ( )),
y z

x x y z

−

+ +
  (8) 
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Parameters xc, yc, zc, xo, yo, zo, wx, wy, wz are set 
according to Fig.2. 
 Non-diagonal element Txy in (5) is [7] 
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Other elements in the matrix ( )rT


are determined from 

(8) and (10) by using circular permutations of indices.  
In order to solve (1) for the unknown magnetization 

M


on nc elements of the ferromagnetic core, a system of 

equations is formed for the unknown magnetic field kH


 

at the center of each element k of the prisms in a 
ferromagnetic core 
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Taking into account that at the center of k-th element the 
magnetic field  

 [ ] ,k kM Hχ=
 

 (12) 

the system of nc equations in (11) is then rearranged in 
the form 

 [ ] 1

1

.
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e
k i k

i

H M M χ −

=

− = ⋅ − ⋅T
  

 (13) 

where [ ]χ  is a local susceptibility tensor. 

If the magnetization M


 is obtained directly from (12), 
for a highly permeable closed core a strong cancellation 
error will occur due to a subtraction of large, nearly equal 
numbers [5].  
  Therefore, a solution is obtained by adding a one 
line-integral equation with the integration path through 
the core 

 ,
c

H dl NI⋅ =
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  (14) 

and enforcing it to match the magnetomotive force. An 
overdetermined system of equations (12) and (13) is than 
solved by the least squares method for the unknown 

magnetizations M


. 
The self- and the mutual inductances are then determined, 
taking into account the contribution of a ferromagnetic 
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Fig. 2.  Rectangular parallelepiped element 

 
 



core, with an integral of the vector magnetic potential 

( )cA r
 
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over the path of a conductor 
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while the contribution of the conducting ring is more 
convenient to be calculated from the energy expression 
[8]  
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  (17)   
Inductances are then 
  

 , , , , ,i j s i j c i jL L L= +  (17) 

 
3. Numerical example 

 
The proposed formulation has been tested on a power 

transformer geometry (Fig. 3). The results for the self- 
and the mutual inductances are benchmarked against 
Ansys Maxwell 16.0. One of the most important goals of 
this study is to find a sufficiently accurate solution that is 
fast enough to be applicable in the design phase.  

This method is particularly suitable for that purpose 
because the interaction element-to-element matrices T in 
(12) have to be calculated only once. Therefore, for a 

change of geometry of windings, only e
kH−


 on the left 

side of (12) has to be calculated again, which is very 
efficient in the optimization problems. 

 The power transformer HV windings layout is 
presented in Fig. 4. Windings are numerated (1) – (50).  

The magnetization in the core (Fig. 5) is calculated 
using (12) and (13). In order to retain clarity, only half of 
the core and the central leg windings are shown.  

The self-inductances and the mutual inductances are 
calculated and the inductance matrix is formed. Results of 
the calculation for the self-inductances benchmarked 
against FEM are presented in Fig. 6. The core is 
discretized in only 192 elements, and the maximum error 
in the self-inductance  
 The results of the calculation of mutual 
inductances of winding (1) to windings (2)–(50) are 
shown in Fig. 7. The maximum error in the calculation of 
a mutual inductance of a winding compared to FEM is 
2.1% (Table I). 

 

 
 

 

 

 
Fig. 5.  Magnetization in core section 

 

 
Fig. 3.  Power transformer core and windings 
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Fig. 4.  Transformer HV windings layout (r1=669 mm, 
r2=796.5 mm, rc=340 mm, h0=89 mm, hw=12.6 mm, hd=19.8 
mm, h=1800 mm, µ=4000µ0)  



 

 

4. Conclusion 

 
Power transformers are crucial devices in efficient and 

reliable transmission and distribution of electricity. 
Fundamental design principles and basic elements of 
transformers (tank, core, windings and insulation system) 
are known for over a hundred years, yet designing a 
modern transformer is a challenging task. The focus in 
power transformer design is on higher efficiency and 
reliability during service and more economic solutions. 
Power transformer self- and mutual inductances are 
important parameters in the design phase and 
optimization of a transformer. In this paper a modified 
magnetostatic moment method developed for the 
calculation of self- and mutual inductances of coils on 
closed highly permeable core is presented. In order to 
handle the cancellation error in the iron core, an 
additional line integral equation of the magnetic field on a 
closed path through the core is enforced to equal the 

magnetomotive force. Finally, a comparison shows that 
the results of the calculation of inductances using a 
modified magnetostatic method are in good agreement 
with FEM. 
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Fig. 7.  Mutual inductances of winding (1) to windings (2)–
(50) 
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Fig. 6.  Self-inductances of the HV windings 

TABLE I 
MAXIMUM ERROR IN THE SELF-INDUCTANCES AND THE MUTUAL 

INDUCTANCES OF THE HV WINDINGS COMPARED TO 3D FEM ANSYS 

MAXWELL 16.0 

 L1 M1,13 

FEM 161.27 mH 160.51mH 
MMM 158.20 mH 157.22mH 
Error[%] 1.9 2.1 


