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Abstract

Model reference adaptive controller is proposed to

control the position of a quadrotor with uncertain model

parameters. The controller design procedure is provided

considering position and attitude dynamics as outer and

inner loops respectively. Reference signals for roll and pitch

angles are obtained from the outer loop controller while

the inner loop controller drives the tracking error of roll

and pitch angle dynamics to zero. Stability analysis for

both inner and outer loop error dynamics are performed

and the adaptation laws are derived based on Lyapunov

stability theory. Since the reference models can also be

assigned separately for inner and outer loops, the speed of

the responses of position and attitude dynamics are adjusted

independently improving the control performance. The

viability and the success of the proposed controller are

tested through simulations studies performed for different

tracking scenarios.

1. Introduction

Unmanned aerial vehicles (UAVs) have captured increasing

attention in last few decades due to their wide area of

usage and advantageous features. One of the most popular

UAV is the Quadrotor having preferable capabilities such as

vertical take-off and landing (VTOL), agile motion and simple

manufacturing process [1]. VTOL property brings quadrotors

forward since it provides the ability of vertical, stationary and

low speed flight options [2]. In addition, quadrotors are able

to move in any direction both horizontal, vertical and their

combination [3]. Quadrotors have a large variety of application

fields such as mapping, search and rescue, surveillance, traffic

monitoring, patrolling for forest fires [1], military and security

purposes [2, 3].

Due to high nonlinearity and complexness of the dynamical

model, the control problem of quadrotors have been considered

extensively. Moreover, the underactuation –defined as having

fewer actuators than the degree of freedom– in the dynamical

model makes the control problem more challenging. This

control problem can be taken into account as the combination

of position control on the parallel plane to the ground, attitude

and altitude control. Linear and nonlinear control methods

are proposed in literature to achieve the control of these

vehicles. Once the system is linearized around a certain

equilibrium point, it can be stabilized via linear controllers

such as full state feedback [4] and linear quadratic regulator

[5]. A linear matrix inequality based method is proposed

for the gain calculation in PID controllers for the linearized

model [6]. In addition to linear controllers, a model reference

adaptive controller (MRAC) is also proposed for the linearized

model of a quadrotor in hovering operation [7]. On the other

hand, the dynamic model of the quadrotor helicopter contains

a combination of high-order nonlinear structure and system

states. Therefore, the domain of attraction of the controllers

designed after the linearization process is very limited. These

controllers are generally effective for hovering [5] or working

with low velocities and small attitude values [4].

Due to the limited motion capability of linear controllers,

various nonlinear methods are proposed for the control of

quadrotors such as backstepping controller [8], adaptive sliding

mode controllers [1,9], direct adaptive controller [10], adaptive

PID controller [11], controllers based on neural networks [12].

In particular, different approaches of adaptive controllers are

proposed for the attitude control of quadrotors with uncertain

parameters [13, 14]. In addition to attitude control, altitude

control is also provided in [15] via a model reference adaptive

controller. An improved performance is obtained with these

adaptive controllers applied to quadrotors with the uncertain

terms existing in the dynamical model. Furthermore, in order to

control also the position of the uncertain model of quadrotors,

various different adaptive controllers are proposed as well

[16–18]. A backstepping based adaptive controller is designed

to deal with the uncertainty only on the mass of the vehicle [16].

In [17], an adaptive controller is designed for the changes in

center of gravity of the quadrotor. Besides, based on Cerebellar

Model Arithmetic Computer (CMAC), an approximate adaptive

controller is applied aiming to provide the robustness against

both uncertainty on mass and external disturbances.

A model reference adaptive controller scheme is proposed

in this paper to control the position of the quadrotor

in 3-dimensional space considering mass, gravitational

acceleration and inertia values uncertain. After designing the

altitude controller, the position control in xy plane is provided

with roll and pitch angles being virtual control inputs, and these

virtual inputs are utilized as desired values for the roll and pitch

angles. Then, a controller is designed for the attitude motion of

the vehicle. Reference models are derived considering position

and attitude dynamics separately allowing to adjust the speed of

the dynamical responses. Numerical simulations are performed

to show the effectiveness of the proposed control structure and

satisfying results are obtained.

2. Dynamical Model of a Quadrotor

The quadrotor examined in this paper has four fixed

propellers placed perpendecularly. The motion control of a

quadrotor helicopter is performed by controlling the speed of

propellers that generate necessary thrusts. Dynamic model



ignoring gyroscopic effects and friction forces is given as

follows [2]:

ẍ =
1

m
(cos φ sin θ cosψ + sinφ sinψ)u1 (1)

ÿ =
1

m
(cos φ sin θ sinψ − sinφ cosψ)u1 (2)

z̈ =
1

m
(cos φ cos θ)u1 − g (3)

φ̈ =
l

Ix
u2 (4)

θ̈ =
l

Iy
u3 (5)

ψ̈ =
1

Iz
u4 (6)

where ζ = [x, y, z]T represents the position of the quadrotor

and η = [φ, θ, ψ]T denotes the attitude states that are roll,

pitch and yaw angles respectively. m stands for the mass of

the helicopter and g is the gravitational acceleration. l stands

for the length of the arm, I = diag{Ix, Iy, Iz} denotes the

inertia moments of the axes. u1, u2, u3, u4 are the control

inputs being composed of the linear combination of propeller

propulsive forces.

A method to change the position of a quadrotor is described

as adjusting pitch and roll angles properly. The problem

of motion of a quadrotor from one point to another on the

3-dimensional space can be considered independent of the yaw

angle. This assumption does not only facilitates the solution but

also provides the possibility of generation plain control rules for

the problem. Assuming that the yaw angle is zero, the dynamics

given by (1)-(3) can be modified as

mζ̈ = m





ẍ
ÿ
z̈



 =





0
0

−mg



+ v (7)

where

v =





v1
v2
v3



 =





cosφ cos θ tan θu1

− cosφ tanφu1

cos φ cos θu1



 (8)

It should be noted that there is only one control input (u1) in

(7) which is used for the control of the altitude. There is no

direct control input for the motion on x and y axes. Thus, φ
and θ angles are utilized to provide motion on x and y axes. In

other words, roll and pitch angles of the quadrotor are adjusted

conveniently in order to eliminate x and y axes position errors.

Following this idea, the controller design procedure is given in

detail in the next section.

3. Controller Design

In this section, a model reference adaptive controller is

designed for the position control of the quadrotor helicopter.

The purpose of the controller is to ensure that the system states

follow the states of the reference model when the physical

parameters of the dynamical model are uncertain. Since the

motion on x and y axes is not directly controlled, roll and pitch

angles are considered as virtual control inputs firstly. Then,

the desired motion for these dynamics is obtained and tracking

controllers for roll and pitch angles are designed. Position and

attitude errors are defined as follows

eζ = ζ − ζm (9)

eη = η − ηm (10)

where ζm = [xm, ym, zm]T and ηm = [φm, θm, ψm]T are

position and attitude vectors of the reference model. The

dynamics of reference models are defined as

ζ̈m = ζ̈d +Kζ2(ζ̇d − ζ̇m) +Kζ1(ζd − ζm) (11)

η̈m = η̈d +Kη2(η̇d − η̇m) +Kη1(ηd − ηm) (12)

with ζd and ηd being desired position and attitude vectors. Here

Kζ1 , Kζ2 , Kη1 and Kη2 are 3 × 3 real and positive definite

gain matrices. Note that, the solutions of both models track the

desired trajectories asymptotically.

The dynamics of the position error defined in (9) can be

obtained utilizing (7) as follows

mëζ =





−mẍm

−mÿm
−mz̈m −mg



+ v. (13)

Note that there are two physical quantities in position error

dynamics that are m and g. These constants will be considered

uncertain in the design procedure and the vector containing

these quantities is defined as follows

γζ =
[

m mg
]T
. (14)

In addition, since γ is considered uncertain, the adaptation error

is given as

γ̃ζ = γζ − γ̂ζ (15)

where γ̂ζ is the estimation of γζ .

In order to obtain the stabilizing control signals, consider

the following candidate Lyapunov function

Vζ =
1

2
eTζ eζ+

1

2
m(ėζ+Kζ1eζ)

T (ėζ+Kζ1eζ)+
1

2
γ̃T
ζ κ

−1

ζ γ̃ζ

(16)

where Kζ1 ∈ R
3×3 and κζ ∈ R

2×2 are positive definite

gain matrices. Taking the time derivative of (16) and adding

±eTζ Kζ1eζ to the right hand side yield

V̇ζ = −eTζ Kζ1eζ + (ėζ +Kζ1eζ)
T (eζ +mëζ +mKζ1 ėζ)

− γ̃T
ζ κ

−1

ζ
˙̂γζ

(17)

Utilizing (13), one can obtain the following relation

mëζ +mKζ1 ėζ =
[

Kζ1 ėζ − ζ̈m −zb
]

γζ + v (18)

with zb =
[

0 0 1
]T

. Defining

ϕζ =
[

Kζ1 ėζ − ζ̈m −zb
]T
, (19)

(17) turns out to be

V̇ζ = −eTζ Kζ1eζ+(ėζ+Kζ1eζ)
T (eζ+ϕ

T
ζ γζ+v)−γ̃

T
ζ κ

−1

ζ
˙̂γζ .

(20)

Assigning the control input for position dynamics as

v = −eζ − ϕT
ζ γζ −Kζ2(ėζ +Kζ1eζ) (21)

where Kζ2 ∈ R
3×3, and the adaptation rule for γζ as

γ̇ζ = κζϕζ(ėζ +Kζ1eζ), (22)

the time derivative of the Lyapunov function defined in (16) can

be obtained as

V̇ζ = −eTζ Kζ1eζ − (ėζ +Kζ1eζ)
TKζ2(ėζ +Kζ1eζ)

T . (23)



Considering (16) and (23), the function in (23) is negative

semi-definite ensuring that the estimated variables are bounded

and [eζ , ėζ ]
T → 0 as t → ∞ according to LaSalle-Yoshizawa

theorem [19]. Even though the convergence result is obtained,

it is only valid when v can be applied directly. However, this is

not the case because of the absence of the direct control input to

roll and pitch angle dynamics. In order to control the position of

the quadrotor on x and y axes, it is considered that the designed

controller provides the desired angles for roll and pitch and u1

is used to control the position of z axis. Therefore, utilizing (8),

u1 =
v3

cosφ cos θ
(24)

φd = tan−1

(

cos θv2
v3

)

(25)

θd = tan−1

(

v1
v3

)

(26)

can be obtained. In this work, it is assumed that φ and θ
angles take values in ±π/2, so that the control signal defined

in (24) can be applied. This assumption can be considered as a

weakness but quadrotor loses the controllability property on the

z axis when such cos φ = 0 or cos θ = 0 and it is a common

assumption in the literature [9,10,16]. Once the desired signals

for roll and pitch angles are obtained, the attitude controller

design procedure can be presented. The attitude dynamics of

the quadrotor given in (4)-(7) can be rewritten as

1

l
Iη̈ = u (27)

where u =
[

u2 u3 u4

]T
. Consider the similar candidate

Lyapunov function to the one given in (16) as

Vη =
1

2
eTη eη+

1

2
(ėη+Kη1eη)

T I(ėη+Kη1eη)+
1

2
γ̃T
η κ

−1

η γ̃η

(28)

with

γ̃η = γη − γ̂η (29)

where Kη1 ∈ R
3×3 and κη ∈ R

3×3 are positive definite gain

matrices,

γη =
[

Ix
l

Iy

l

Iz
l

]T

(30)

and γ̂η is its estimation. Following the same procedure

performed for position dynamics, the time derivative of Vη can

be obtained as

V̇η = −eTηKη1eη − (ėη+Kη1eη)
TKη2(ėη+Kη1eη)

T
(31)

when the control vector is assigned as

u = −eη − ϕT
η γ̂η −Kη2(ėη +Kη1eη) (32)

and the adaptation law is set as

γ̇η = κηϕη(ėη +Kη1eη), (33)

where Kη2 ∈ R
3×3 is a positive definite matrix and

ϕT
η = diag{Kη1 ėη − η̈m}. (34)

The boundedness of adapted variables and convergence of the

error signals to zero can be concluded with (28) and (31) by

means of previous similar analysis.

4. Simulation Results

Various simulation studies have been implemented using

Matlab in order to test the performance of the proposed

controller. The model parameters of the quadrotor utilized in

the simulations are given in Table 1. The step size of the solver

is set as 1µs and the controller sampling time is adjusted as

1ms in simulations. Two simulations are run for two different

trajectories. The reference signals for x, y, and z are taken as

a square wave in the first simulation while the reference signals

are sinusoidal for x and y, and a ramp for z in the second

simulation. All the states are set to zero initially except the yaw

angle which is equal to π/4 in both simulations, and Table 2

gives the gain values for each simulation.

Table 1. Model parameters

Parameter Value Unit

m 3 kg
g 9.81 m/s2

l 1 m
Ix 10−3 kg m2

Iy 10−3 kg m2

Iz 10−3 kg m2

The responses of the first simulation are given in Figures 1

to 3. In Figure 1 the changes of position and attitude are shown

for the first reference signals. The position of the quadrotor

converges to the reference position while the attitude values
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Figure 1. Results for simulation #1: Change of position and

attitude signals (Reference signals are given in dashed (black)).
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Figure 2. Results for simulation #1: Change of control signals.

Table 2. Gain values used in simulations

Parameter Simulation #1 Simulation #2

Kmζ1
2 4

Kmζ2
4 4

Kmη1
16 16

Kmη2
8 8

Kζ1 1 2
Kζ2 10 20
Kη1 0.1 0.1
Kη2 1 1

converge to zero as commanded. The change of control inputs

for uncertain parameters are demonstrated in In Figure 2. There

is no saturation in control signals in the simulations and these

signals take relatively large values when a step reference is

applied. This issue does not effect the stability of the quadrotor,

however the response would be more sluggish when control

signals are saturated. In Figure 3, adapted signals for uncertain

parameters are depicted. The adapted signals change during

the transient of the error signals and they converge to a bounded

values. Although the convergence of the adapted signals to their

actual values is not guaranteed theoretically, the trajectories of

the system track the reference signals successfully. Hence, it

can be concluded from the results that the position and attitude

values converges to the desired values following the reference

models without steady-state error when the proposed controller

is implemented.

Figures 4 and 5 present the response for the second

simulation with the proposed controller. The trajectory in this

simulation corresponds to a circular path in 3D space with the

altitude increasing by time. The results for position and attitude

values are given in Figure 4 in which the success on trajectory

tracking can be observed. Figure 5 depicts the motion of the

quadrotor in 3D space. Note that the trajectory is followed with

a steady state error caused by the reference model being type-0.
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Figure 3. Results for simulation #1: Change of adapted signals.
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Figure 4. Results for simulation #2: Change of position and

attitude signals (Reference signals are given in dashed (black)).
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3D space.

5. Conclusion

A Lyapunov based model reference adaptive controller

design has been presented for the position control of uncertain

dynamical model of the quadrotor. Position and attitude

dynamics have been taken into account separately and

tracking adaptive controllers have been designed for both

dynamics. Lyapunov stability analysis has been performed

for the proposed controllers. Simulation studies implemented

considering the model uncertainties have shown the successive

performance of the proposed adaptive control structure.
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