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Abstract 

In this paper, Adaptive Model Predictive Control (AMPC) based 

Energy Management Strategy (EMS) for Hybrid Electric Vehicles 

(HEVs) is proposed to minimize the hydrogen consumption and to 

increase the energy sources lifetime. The EMS problem is 

simplified according to the control structure of the vehicle. 

Moreover, adaptive algorithm is used to dynamically adjust the 

weights of targets. The Energetic Macroscopic Representation 

(EMR) and control scheme of the vehicle is implemented in 

MATLAB-SimulinkTM. To test the performance two standard 

driving cycles and a real urban cycle are used. The simulation 

results of proposed AMPC show a noticeable improvement in fuel 
economy and battery charge-sustainability.  

1. Introduction 

 As the energy is increasingly depleted and environmental pollution 
becomes a serious concern, HEVs attract more and more attention for 
their advantages of energy saving and environmental protection [1]. The 
current hybrid car generally refers to the internal combustion engine, 
generator, and energy storage system (battery or ultracapacitor). Since 
HEVs take into account the advantages of traditional fuel vehicles and 
pure electric vehicles, they can be designed to achieve different goals 
such as emission reduction and fuel economy [2]. However, its structure 
is much more complex than traditional cars and pure electric vehicles 
because of more connected components, which makes the design of 
energy management strategy also more complex. The excellent EMS is 
the key to the energy saving of hybrid electric vehicles [3]. Therefore, 
the EMS of HEVs has become one of the hot topics for experts and 
scholars in recent years. 

Due to the nonlinearity, dynamic and constrained characteristics of 
the model, energy management optimization problem has been a 
nonlinear and dynamic optimization problem as applied to control 
system [4]. In the past years, lots of optimization approaches were 
proposed for offline and online EMS problem. Dynamic Programming 
(DP) algorithm has been used for energy management of HEV since 
2000 and is recognized as an ideal hybrid energy management method, 
which can achieve global optimization and a better improvement in the 
fuel economy [2,5]. But this method requires the driving cycle and thus 
computationally demanding in advance, so it is suitable to be used in 
offline optimization [3]. It can also be used as benchmarks to evaluate 
other online optimization approaches. Although Stochastic Dynamic 
Programming (SDP) algorithm is proposed to reduce the computation 
burden, it still could not be applied in real-time driving cycles [6]. In 
order to solve computation problem, instantaneous optimization 
methods were proposed, namely Equivalent Consumption 
Minimization Strategy (ECMS). The basic idea of ECMS is to transfer 
energy cost of battery to fuel consumption by defining Equivalent 
Factor (EF). Sciarretta A et al. [7] adopted ECMS from the perspective 
of real-time EMS and used different EFs to optimize the solution 
considering the difference between the charging and discharging 
process. Musardo C et al. [8] proposed adaptive ECMS which can 
estimate the EF according to the historical and current driving 
conditions. Although this method has good performances on each short 

interval and can be used in real time, it may not give best decisions for 
whole driving cycle because the dynamic characteristic of model is not 
considered. Model Predictive Control (MPC), which can solve EMS 
optimization problem over a finite driving interval rather than at each 
instant time, is a better choice as a compromise between the 
computational cost and the non-causality of a globally optimal DP 
solution and also the faster, causal, but instantaneous ECMS solution 
[4]. H. Ali Borhan et al. [9] proposed LTV-MPC method to determine 
the given power ratio between engine and battery, by linearizing the 
nonlinear and constrained optimal control problem and defining the cost 
function included fuel consumption and State-of-Charge of battery but 
not taking battery recharge cost into account. Umberto Sartori et al. [10] 
also used the Nonlinear MPC method and considered the battery 
recharge equivalent cost but ignored the charge-sustainability of battery. 
Both of later two studies took the demanded torque and speed as the 
control input, which increases the complexity of the optimization 
problem and results in huge computational cost.  

In this paper, an AMPC based EMS for Fuel Cell Hybrid Electric 
Vehicle (FCHEV) is proposed to decrease the hydrogen consumption 
and to extend the lifetime of system. Firstly, the energy management 
optimization problem is simplified according to the control structure 
deduced by EMR. Secondly, the quadratic cost function considering 
hydrogen consumption, battery recharge equivalent cost and battery 
charge-sustainability is built to estimate the performance of FCHEV. 
Then adaptive algorithm is also used to dynamically adjust the weights 
of targets. Finally, simulation results of diverse driving cycles are 
evaluated to exhibit the efficiency of the proposed adaptive MPC 
compared to the conventional ECMS method.  

The rest of the paper is arranged as follows. Section 2 presents 

the system configuration and vehicle models. An online EMS based on 
AMPC for parallel hybrid electric vehicle is proposed in section 3. 
Section 4 presents the simulation results. Section 5 concludes the 
paper. 

 

Fig. 1. Studied fuel cell/battery vehicle architecture. 

2. Fuel cell/battery vehicle 

2.1 System configuration 

The studied fuel cell/battery vehicle architecture taken from the 
IEEE VTS Motor Vehicles Challenge 2017 is as shown in Fig. 1[11]. 
It is consisted with energy storage subsystem and traction subsystem 
which are connected by a voltage-source-inverter. A compressor 
ensures the supply of oxygen for FC and it is considered as a voltage 



source using its static polarization curve [11]. A non-reversible boost 
chopper and a smoothing inductor connected FC with the energy 
storage sub-system. Seen from the Fig.1 the energy storage subsystem 
directly connected to traction sub-system can reduce the number of 
converters and the complexity of system, this also improves the energy 

economy. The studied vehicle parameters are presented in Table 1. 

Table 1. Fuel cell/battery vehicle parameters 

Fuel cell 

system PEMFC 

voltage 40-60 V  

Rated power 16 kW 

maximum 
current 

400A 

H2 5.5kg 350bar 

Smoothing inductors 5.5 mΩ, 0.25 mH  

Lithium Iron Phosphate 
(LiFePO4) battery 

80 V, 40 Ah  

Electric drive 15 kW  

Vehicle mass 698 kg  

maximum speed 85 km/h 

2.2 Modelling  

2.2.1 Fuel Cell 

 Fuel Cell system (FC) is consisted of the fuel cell, a smoothing 
inductor, a boost chopper and other ancillaries which is not modeled in 
this paper. In [11], the fuel cell having an experimentally validated 
quasi-static model is used as a voltage source, H2 mass flow

2Hm is also 

considered as a static characteristic expressed in (1). For the parallel 
architecture of fuel cell and battery, power split rate is as same as 
demanded current split rate. 

2 2 2=gH fcm i h                (1) 

where 
2g , 2h are the constants obtained from experiments [11]. 

2.2.2 Battery  

Different from the SoC of the battery (
batSoC ) formulated in [1, 

4, 10], in the challenge 
batSoC is estimated as following[11]: 
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where 
initSoC is the initial SoC of the battery, 

batQ is the battery 

capacity and 
bati is the battery current. 

According to the Kirchhoff’s current law, the relationship of the 
energy storage subsystem and traction subsystem is as following: 
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   (4) 

where
hfcm  is the modulation ratio of the FC chopper; 95%hfc  is 

the average efficiency of the chopper [11]. 

 The details about other parts of system can find in [11] and the 
control system structure is shown in Fig. 2 [11].  

 

Fig. 2. EMR and inversion-based control of the studied fuel cell 
vehicle 

3. Proposed Energy Management Strategy 

3.1 Problem Statement 

Hybrid Electric Vehicles have better performance on fuel economy 

compared to traditional single power supplement vehicles due to 
combined advantages of fuel cell and battery. The power distribution 
between fuel cell and battery directly influences the proficiency of 
whole system. According to the model presented in section II, EMS 
element will determine the distribution of power demand from driver 
by giving reference current for fuel cell control system under the 
certain constraints, in other word, power split problem will be 
transferred to a current split optimal problem due to the model used in 

this paper. In order to focus on the EMS, the breaking strategy will not 
be considered in this paper.  
 Based on the vehicle model in this paper, the energy storage 
system can be simplified as 
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       (5) 

where ( )batSoC t is the energy consumption rate of battery, 
hfc  takes 

the value 0.95 because in this paper when current demand tsi  less 

than 0, the fuel cell system will work at the minimum power point. 
According to the introduction part, a quadratic cost function taking 
three targets into account is given to minimize fuel consumption and 
AMPC method is proposed to solve it as followed.  
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where t  is the prediction horizon,
f ,

ef ,
batSoC are penalty 

weights of fuel consumption, equivalent factor of battery energy 

consumption and deviation of
batSoC from the ideal value 

rSoC  

respectively. Therefore, the moving horizon optimal problem in each 
interval is defined by   

2 2

{ ( ), ( )}

2

.min .max

.max

.min .max

min ( ( ( )) ( ( ))

( ( ) ) )

( )

0 ( )

( )

fc bat

bat

t t

f f ef bat
i t i t

t

SoC bat r

bat bat bat

fc fc

fc fc fc

J= m SoC  

                        SoC SoC d

SoC SoC t SoC

i t i

i i t i

   

  



   

 

  


 

    


(7) 

where 
.minfci  ,

.maxfci  represent the limitation of fuel cell current 

generation which reduce stack faults and degradation [11]. 



3.2 MPC model  

MPC optimization problem can be transferred to quadratic 

program (QP) with linear inequality constraints, the standard format is: 

2T T

U
U arg min U H U U f


       

Subject to  

  A U b                   (8) 

where H , f  are the constant matrix; A  is constraint coefficient 

matrix; b is the column vector; U   is the optimal input sequence. 

The optimal control input sequence is 

1u( k ) u( k ) u( k )           (9) 

 First the optimization problem and energy storage system state 

equation can be formulated in discrete-time as  
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where p is the step of prediction horizon;  is the interval of each 

prediction step; M is the lower triangular matrix; 

0

T

fc fc fcI = i (-1) i (-1)      0 0 0
T

bat batY = SoC SoC  
 

where 
fci (-1)  is the measured fuel cell current at the moment of 

optimization) are the initial value of fuel cell current and 
batSoC

sampled in every MPC optimization cycle respectively; 

 
T

bat bat bat batsI = i (0) i (1) i (p-1) is the battery current sequence; 

 
T

ts ts ts tsI = i (0) i (1) i (p-1) is the input current demand from driver; 

   1
T

Y= SoC SoC p  
is the 

batSoC sequence. 

 The equation (11) can be rewritten in matrix and then comparing 

with equation (8), the coefficients of QP problem, H and f can be 

obtained as followed. It is easy to find A  and b by using same 
method. 
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where B , L and are constant matrixes representing
2h ,

rSoC ;
1C ,

2C ,

3C ,
4C ,

5C  are constraints matrixes; I is identity matrix. 

3.3 AMPC based Energy Management Strategy  

The on-line energy management optimization problem presented 
in this paper is formulated as a repeated solution of a finite horizon 
optimal control problem considering system dynamics, input and state 
constraints [13]. In the proposed AMPC method, the penalty weight

batSoC will be adjusted according to the deviation of 
batSoC  which 

shows the system dynamics. Then the formulated MPC model is 
applied to obtain the control inputs with measured data of system at 

each sampling time. Moreover, the stability and disturbance rejection 
properties of MPC were tested in [14]. The specific actions of the 
AMPC based EMS are performed at each sampling time as followed. 

 Measurement of the system state (
batSoC ,fuel cell current 

fci , 

current demand 
tsi ,the chopper modulation ratio 

hfcm ) 

 Adjustment of the 
batSoC  with PI controller (13) according 

to the deviation of 
batSoC   

0

0

( ) ( )

( ( ) )

batSoC p bat r

t

i bat r
t

t K SoC t SoC

K SoC SoC d

 

 

  

 
   (13) 

 Prediction of the current demand over the prediction horizon 

and preparation of the coefficient H , f    

 Application of the current split strategy AMPC obtaining the 
optimal control input for the first timeslot.  

  In order to estimate current demand in the future correctly, the 
changing rate of current demand  is computed analytically as 

following (14) via various simulations and observations and the 

simulation performance is in Fig.3. Then the tsi  in the perdition 

horizon is calculated as (15). 
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Fig. 3. Comparison of predicted and real-time current demand 

In this method, although 
batSoC  is adjusted by equation (13) , 

based on the rule-based control some principles are also set to limit it 

such as increasing the penalty weight 
batSoC  to huge value when it 

is less than safe range 0.5, due to the extreme situations which can 
result in over discharge of battery.  

4. Simulation Results 

 In this paper, considering the robustness and availability of the 
proposed AMPC based EMS, three different driving cycles which 
represent different driving situations will be used to evaluate the 
performance comparing with conventional ECMS method: the New 
European Driving Cycle (NEDC) which is designed to determined CO2 
emissions and fuel economy in passenger cars; a class 2 Worldwide 
harmonized Light vehicles Test Procedures (WLTC) which is designed 
to harmonize the worldwide driving behavior from 2015; an urban 
driving cycle from a Tazzari Zero presented in [11]. The program 
developed in MATLAB-SimulinkTM for the challenge 2017 is used to 
develop and to test the proposed AMPC which runs on a computer with 
2.3GHz working frequency and 8GB RAM. 

4.1 Simulation setup 

In this paper, some parameters of MPC model are chosen as 
follows: the length of prediction horizon is 2.5s; the sample time is 
0.25s, so p is 10, which can be considered as tuning parameter but not 

discussed here. The range of 
batSoC  is from 0.4 to 0.7, the initial 

value 
0batSoC  is 0.7, ideal State-of-Charge of battery 

rSoC is 0.6 

[4]. It has to be reminded that in order to compare different method 
fairly, the battery will be charged to the initial state at the best 
efficiency point after driving cycle finished. And some parameters 

about the fuel cell system can be found in [11]. To adjust the
batSoC

with PI controller, the parameters are chosen to be
0 5= , 100pK = ,

1iK  ; based on the experiments of three driving cycles, 
ef  and 

fc  are chosen as 25 ,1 respectively (  is the EF at the best 

efficiency point, according to the challenge file, 259.55= ).  

 

 

Fig. 4. Vehicle speed, power split, voltage of FC and battery of 
NEDC. 

 

Fig. 5. Energy distribution, the State-of-Charge of battery and the 
H2 consumption of NEDC. 

4.2 Simulation results 

The simulation result over driving cycle NEDC is shown in Figs 4 
and 5. Moreover, simulation results of AMPC and ECMS over NEDC, 
WLTC and Real Urban driving cycle are shown in TABLE II. The 
power demand (or current demand) is separated according to the 

proposed AMPC based EMS. The changes of 
batSoC  is very slow 

because the penalty weight of battery current is bigger than the FC 
current, due to reducing the battery degradation which means improve 
the charge-sustainability. Comparing the performance of ECMS and 
proposed AMPC presented in TABLE II, the improvement of fuel 
consumption for three different cycles is 4.86%, 1.80%, 4.71% 
respectively. The reason for the small improvement of WLTS is 

possibly inaccuracy of predicted current demand. Considering other 
performance about charge-sustainability of battery, the battery 
degradation based on AMPC is decreased by 42.43% averagely 
comparing with EMS based on ECMS, which means battery 
degradation is much slower by using ECMS based on AMPC. 
Meanwhile, the degradation of FC is also reduced by 3.89% averagely, 
which means that energy sources lifetime (including battery and FC 
system) is extended. In order to test the adaptivity of proposed method, 
the scoring driving cycle, which is obtained from a real test drive 

(2590s) included urban and extra driving, is used in proposed method. 
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The result shows that the 
batSoC  fluctuated around the 

rSoC and did 

not passed the limitation. The average computational cost is 0.033s for 

every optimization cycle. 

Table 2. Simulation results of AMPC and ECMS  

Driving 

Cycle 
Performance index ECMS AMPC 

NEDC 

SoC_end 0.6033 0.6102 

Battery Degradation 0.7332 0.3434 

FC Degradation  3.0597 2.8976 

Hydrogen cost (g) 139.97 133.17 

WLTC 

SoC_end 0.6480 0.6050 

Battery Degradation 0.8605 0.4211 

FC Degradation 3.0672 2.9409 

Hydrogen cost (g) 173.36 170.24 

Real 
Urban 

SoC_end 0.6215 0.6413 

Battery Degradation 0.5526 0.4253 

FC Degradation 2.6376 2.5779 

Hydrogen cost (g) 54.64 52.07 

Note: the value of Battery Degradation and FC Degradation 

is multiplied by 104. The degradation is calculated based on 
the equations presented in the challenge [11], from 0 (means 
can not work any more) to 1 (means still new, never be used), 
no unit.  

5. Conclusion 

 In this paper, a new online energy management strategy for hybrid 
electric vehicles based on Adaptive Model Predictive Control is 
proposed to minimize the fuel consumption and increase the energy 
sources lifetime. This method is a compromise between short-sighted 

ECMS method and cycle-dependent and computational DP method. 
During a finite prediction horizon, the proposed method can obtain the 
optimal control inputs considering the future situation with lower 
computation intensity. The quadratic cost equation takes fuel economy, 
battery recharge equivalent cost and charge-sustainability of battery 
into account. The simulation results of different driving cycles 
demonstrate that proposed method can minimize the fuel consumption 
well and extend the lifetime of battery almost 50%. This paper gives a 

better understanding of MPC and more research will be done about the 
prediction horizon and adjustment of penalty weights in the future. 
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