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Abstract 
 

The oscillators with different type of output signal e.g. 
sinusoidal, triangular, square etc. are often produced as 
function generators. Moreover quadrature oscillators are 
used in measurements and communication applications, e.g. 
mixers and single sideband modulators. In measurement 
applications this types of oscillators are used in selective 
voltmeters and vector generators. In this paper some 
problems with amplitude of generated waveforms of 
quadrature oscillators are described and also simulation 
results and techniques of oscillator’s construction are 
presented.  

 
1. Introduction 

 
The electronic oscillators can be divided into two main 

groups according to the type of signal. Oscillators generating 
sinusoidal signals are termed "linear" oscillators. All other 
oscillators are termed relaxation oscillators [1-4]. Linear 
oscillators (without control) are normally considered as second 
order systems. The block diagram of ideal conservative system - 
linear quadrature oscillator with sinusoidal outputs x1, x2 is 
displayed in Fig.1. Such system can be described in state space 
by equations 
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where ω is angular frequency. The ideal nonlinear quadrature 
oscillator with nonlinear function f(.) is shown in Fig. 2. 
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Fig. 1. Linear quadrature oscillator with sinusoidal output 
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Fig. 2. Ideal nonlinear quadrature oscillator  
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Fig. 3. Example of triangular wave quadrature generator with 
OA1 – OA4 (TL074), parasitic capacitors CP1 = CP2 ≈30 pF 

connected to comparators inputs. R1 and R2 are used for 
frequency control, R3 and R4 for amplitude control  

 
If the linear or nonlinear oscillator is constructed according 

Fig. 1 or Fig. 2 (with operational amplifiers - OA), amplitude of 
output signal is increasing up to limitation, because of parasitic 
capacitors. If the roots of closed loop characteristic equation of 
the oscillator (linear or linearized system) are located in right 
half of s-plane, the oscillations would be increasing up 
exponentially. They would be limited by some inherent non 
linearity of the active device, such as the saturation type 
nonlinear characteristic of the OA [5-8]. Such limitation may 
also distort the output waveforms. Good example is triangular 
wave quadrature generator shown in Fig. 3, consists of 2 
integrators and 2 comparators where nonlinear function is 
f(.)=sign(.). Parasitic capacitors are CP1 and CP2 (dashed). The 
resistors R5, R6 with parasitic capacitors causes instability – 
amplitude increasing of output signals (system is 4-th order). 
One possible amplitude control (stabilization) is based on 
integrators dissipation by means of resistors R3 and R4. In 
following parts, some methods of amplitude control of 
oscillations are described. 

 
2. Principles of Stability Control and Results 

  
There are several possibilities of the stability (amplitude) 

control. The 3 possible feedback principles are shown in Fig. 4. 
Feedback value is β. 
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Fig. 4. Principles of the feedback amplitude control containing 
integrator and nonlinear function: a) Feedback around the 

integrator, b) Feedback from the output of nonlinear function,  
c) Feedback from the integrator output  

 
The feedback’s described in Fig. 4 can be described by 

equations 
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Amplitude control according (2) is described in next part. 
 

3. Simulations and Constructions 
 
The first block diagram of the system (according Fig. 4 a) is 

displayed in Fig. 5, circuit diagram is shown in Fig. 3. 
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Fig. 5. Structure of the system with feedback α around the 
integrators 

In Fig. 5 (and also in Fig. 7 and 9) the kf is constants for 
frequency control, kP = 1/τP where τP=R·CP (time constants of 
resistor R5 and R6 and parasitic capacitors CP), α is dissipation 
parameter. The structure shown in Fig. 5 can be described by 
state space equations 
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Singular point is (0,0,0,0) and linearized equations are 
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For the numerical values kf =1 and kP=100 linearized state 

space system with dissipation parameter α is 
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    (5) 

 
System described by eq. (5) was solved for local stability, 

see Fig. 6, where α is on X- axis and maximal value of real part 
of eigenvalues on Y- axis. From this figure can be seen that for 
α>0.01 the system is stable (all real parts of eigenvalues are 
negative). 

The second structure of the system (according Fig. 4 b) is 
shown in Fig. 7. System is controlled by changing the value of 
cO. State space equations are 
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Fig. 6. Maximal value of real part of eigenvalues as a function 
of dissipation parameter α 
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Fig. 7. Structure of the system with feedback taken from the 
output of nonlinear function 

 
By the same way as in previous system, for numerical values 

kf =1 and kP=100 linearized state space system controlled by 
parameter cO is 
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    (7) 

 
The result is exactly the same as graph in Fig. 6. System is 

stable for cO>0.01. Circuit diagram is presented in Fig. 8. 
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Fig. 8. Circuit diagram of the system where feedback is derived 
from the output of nonlinear function sign(.) 
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Fig. 9. Structure of the system with feedback from the output of 
integrator 

 
The third structure of the system (according Fig. 4 c) is 

shown in Fig. 9. System is controlled by changing the value of 
cO. State space equations are 
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By the same way as in previous examples, the numerical 

values for kf =1 and kP=100, linearized state space system 
controlled by parameter cO is 
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    (9) 

 
Result is presented in Fig. 10. System is stable for cO>1. 

Circuit diagram is shown in Fig. 11. 
 

 
 

Fig. 10. Maximal value of real part of eigenvalues as a function 
of dissipation parameter cO 
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Fig. 11. Circuit diagram of the system where feedback is 
derived from the output of integrator and f(.)=sign(.) 
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Fig. 12. Simplest version of quadrature oscillator derived from 
Fig. 11 with nonlinear function f(.)=sign(.) 

 
Circuit diagram from Fig. 11 can be simplified by means of 

removing OA5 and one resistor divider. The simplest version of 
triangular wave quadrature oscillator is shown in Fig. 12. 
Simulation results of this oscillator are displayed in Fig. 13, 14. 

 

 
 

Fig. 13. Phase plane trajectory. Simulation of the start-up of the 
oscillator from Fig. 12 

 
 

Fig. 14. Time evolution. Simulation of the start-up of the 
oscillator from Fig. 12, f=1250 Hz 

 

 
 

Fig. 15. Scope of measured signals, start-up of oscillator 
according Fig. 12. Signals at the outputs of integrators (top) and 

outputs of comparators (bottom), f=1195 Hz 
 

Table 1. Steady state output frequency and peak to peak voltage 
PP as function of R5 (oscillator according Fig. 12) 

 

R5 [Ω] f [kHz] VO  PP [V] 
2k7 0.35 15.6 
3k9 0.5 11.3 
5k6 0.65 8.8 
8k2 0.88 6.44 
10k 1.02 5.57 
15k 1.42 3.91 
22k 1.87 3 
33k 2.38 2.35 

  
The oscillators from Fig. 3, 8, 11 and 12 was constructed and 
tested. Measuring results of the simplest oscillator according 
Fig. 12 are presented in Fig. 15 and Table 1. The frequency is 
affected by amplitude control which can be compensated (but 
not presented in this work). Example of amplitude control is 
illustrated in Fig. 16. 

 

 
 

Fig. 16. Simulation of amplitude control. For t<0.005, 
prescribed amplitude is 0.8 V, for t>=0.005 is 1.2 V 



4. Another Types of Quadrature Oscillators 
  

In previous simulation and oscillators constructions nonlinear 
functions were f1(.)=f2(.)=sign(.). For different type's shapes of 
waves the simulation with other linear-nonlinear function was 
done. List of the functions f1(.)=f2(.) is in (10) 
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There are possible construct the oscillator also with mixed 

version of function f1(.)≠f2(.) eg. according eq. (11) 
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Simulation of phase portrait of state variables for mixed 

version functions is shown in Fig. 17, scope of steady state 
signals is illustrated in Fig. 18. The measured results are with 
good agreement with theory and simulations. 

 

 
 

Fig. 17. Phase portrait of steady states variables x1 and x4 for 
mixed version of function f1(.)≠f2(.) according (10). Such system 

generate triangular and sine wave outputs 
 

 
 

Fig. 18. Scope of steady state signals of mixed version 
system. Function f1(.)=k.sign(.);  f2(.)=k according eq. (10). 

Signals at the outputs of integrators (top), outputs of amplifier 
(middle) and comparator (bottom). 

 
5. Conclusions 

 
In this work the nonlinear dynamical system used as 

quadrature oscillator was described. The unstable behavior of 
system was stabilized by means several types of feedback. The 
mathematical description and structure of the system was used 
as the first, after the results of simulation were shown and 
finally also construction of generator and measuring confirmed 
previous results. Generator can be of course constructed from 

modern building block current and voltage conveyors, e.g. CCII 
[9, 10], digital potentiometers used for control [11], etc., but 
important is universal principle of stabilization solution 
approach, which can be used also for other types of dynamical 
systems and different shapes of signals. 
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