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Abstract

This paper considers the use of autotoregressive (AR) mod-

eling of Electroencephalogram (EEG) signals to discrimi-

nate between normal and epileptic EEG signals on one hand

and to descriminate between seizure and seizure-free EEG

signals on the other hand. Each epoch of EEG signal is mod-

eled by an AR model of order P . Then, the obtained P AR

coefficients are used in training and testing of a support vec-

tor machine (SVM) classifier. The optimal AR model order

is investigated. The method is tested against a widely used

EEG database and results show a classification accuracy of

100% when considering normal and epileptic EEG signals

and a classification accuracy of 96.54% when considering

seizure and seizure-free EEG signals. The obtained results

are along with those obtained by state of the art EEG signal

classifiers.

1. Introduction

The conventional methods to detect seizures involve visual

inspection of electroencephalography (EEG) recrodings. The

length of such recordings in the case of long term EEG (can

be 24 hours long) and the number of channels (can reach 128

channel) makes this task fastidious. In addition, the develop-

ment of portable EEG systems which can be used in homecare

systems makes the use of automatic detection of seizures of cru-

cial importance. Several works addressing this problem were

presented and different techniques were used to realize the de-

scrimination between differents EEG signal epochs. The main

difference between these works is the chosen method for fea-

ture extraction. In [1] empirical mode decomposition is used

to extract features. Entropy estimation is used in [2-4] such as

discrete wavelet transform aproximate Entropy in [2] and per-

mutation entropy in [3] and aproximate entropy used in an ex-

treme learning machine in [4]. Local binary patterns are used in

[5,6]. EEG being non stationary, time-frequency representation

were used in [7,8]. Horizontal visibility graphs are used in [9]

and fractional linear prediction in [10]. Several other methods

are used for the extraction of descriminative features for EEG

signal classification purpose and it is not possible to cite them

all. Therefore a comprehensive review of EEG feature extrac-

tion methods is given in [11]. It should be noted that the prob-

lem of descrimination between normal (healthy) and epileptic

EEG signals is almost addressed in term of classification ac-

curacy. Actually, several methods reached 100% classification

accuracy and it does not go under 99.5%. The reamaining is-

sues for this classification scheme concern algorthmic complex-

ity (and thus execution time issue) and the implementation is-

sues. However, descriminating between different epileptic EEG

signals: seizure-free and seizure EEG signals is still an ongo-

ing issue and there is no solution that have fully addressed this

problematic.

In this paper we present a method based on the use of autore-

gressive (AR) modeling of EEG epochs for EEG signal classi-

fication. We apply the method for both classification problems:

normal against epileptic EEG signals and seizure-free against

seizure EEG signals. An investigation about optimal model or-

der is conducted. The obtained AR coefficients are used as en-

try features for a support vector machine (SVM) training and

testing classifier. The remainder of this paper is as follows. In

section 2, the materials and method are presented. The results

and a discussion are presented in section 3 and finally we finish

with a conclusion in section 4.

2. Materials and Methods

2.1. EEG dataset

There is a widely used and publicly available database de-

veloped within the department of epileptology at the university

of Bonn [12]. This database contains 5 sets of EEG recordings

noted A-E. Recordings belong to two categories: EEG signals

of 5 healthy controls (A, B) and EEG signals of 5 epileptic pa-

tients (C, D, E) such as C and D include only seizure-free inter-

vals and E includes only seizure activity. Each set consists of

100 epoch of 23.6 s length. The sampling frequency is 173.61

Hz with 12 bits depth. In this paper we use three sets such (A,

D and E). Two binary classification schemes are used: 1) De-

scriminate between normal (A) and epileptic (E) EEG signals,

2) Descriminate between seizure-free (D) and seizure (E) EEG

signals. The use of these two classification schemes is done in

order to make comparisons with other reported researches that

used these schemes [1-10]. Figure 1 depicts a sample from each

of the three sets we are using in this paper (A, D, E).

2.2. Autoregressive Modeling

Each epoch of EEG signal of length n is modeled by an AR

model of order P as the output of recursive linear system. The

input is modeled by a white noise en:

xn = en +

P∑

i=1

−aixn−i (1)

where ai represents the AR model coefficients and xn repre-

sents the EEG signal epoch of length n. In the case of the used
database the length of each epoch is of 23.6 s which corresponds

to 2097 samples. Therefore n = 2097. The autoregressive

modeling as presented in equation 1 represents a linear predic-

tion of xn using the weighted sum of previous samples and thus

en represents the modeling error. The estimation of the AR co-

efficients is made by minimizing the prediction error en (For

more details refer to [13]). By minimizing the mean squared

prediction error and after some calculations we obtain the Yule-



Figure 1. Sample recording of EEG signal taken from the sets A (normal), D (epileptic/seizure-free) and E (epileptic/seizure period)

Walker equations stated as:

P∑

i=1

rxx(i− j)ai = −rxx(j) for j = 1, ..., P (2)

or in a matrix form as:
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Equation 3 represents a Toeplitz matrix and it can be solved us-

ing the levinson recursion algorithm (see [13]). The levinson al-

gorithm allows the reduction of the calculation complexity from

an order of P 3 to an order of P 2.

2.3. Determining AR model optimal order

The AR modeling of each EEG epoch results with P AR

coefficients. These coefficients are used as entry features for

the training and testing classifier. The classifier used in this

work is the support vector machine (SVM). The kernel used

in this paper is the quadratic kernel with sequential minimal

optimization method [14]. The theoretical background on the

SVMmethod can be found in [15]. Herein, we use two different

classification schemes (two distinct classifiers) such as: Normal

vs. Epileptic (A and E) and Seizure-free vs. Seizure (D and

E). For each scheme the AR model order that maximizes an

objective function (in this paper the classification accuracy) is

determined. The methodology followed for AR model order

determination is as follows:

1. Vary the AR order P from 2 to 20.

2. Estimate AR coefficients for the 200 epochs.

3. Divide the data into 10 folds (the number of epochs from

each class is the same) and use 9 folds for training and

one fold for testing and calculate the classification accu-

racy.

4. Repeat the operation 10 times by changing every time

the training folds and the testing fold. Then, average the

classification accuracy over the 10 experiments.

5. Determine P that maximizes the classification accuracy.

This methodology is applied to the classification scheme 1 (A

vs. E) and the obtained classification accuracies for the AR

order varying from 2 to 20 is depicted in figure 2. Similarly,

the same methodology is applied to the classification scheme 2

(D vs. E) and the obtained classification accuracies for the AR

order varying from 2 to 20 is depicted in figure 3.

3. Results and Discussion

Three metrics are used to evaluate the performance of our

algorithm the classification accuracy (Acc), the sensitivity (Se)

and the specificity (Sp):

Acc =
TP + TN

TP + FN + TN + FP
× 100 (4)

Se =
TP

TP + FN
× 100 (5)

Sp =
TN

TN + FP
× 100 (6)

where TP stands for true positives which means the number of

seizure episodes correctly classified, FN stands for false neg-

atives which means the number of seizure episodes wrongly

classified (classified N), TN stands for true negatives which

means the number of normal EEG episodes (or seizure-free

episodes) correctly classified, and FP stands for false positives

which means the number of normal EEG episodes (or seizure-

free episodes) wrongly classified (classified as seizure episode).

Classification accuracy is an overall metric of the algorithm.

The sensitivity estimates the ability of the algorithm to detect

seizures. The specificity estimates the ability of the algorithm

to detect normal EEG episodes (or seizure-free episodes).

The method is applied in the scheme 1 (normal EEG vs. seizure



Figure 2. Classification accuracy obtained for the classification scheme 1 (A vs. E) for AR order varying from 2 to 20

Figure 3. Classification accuracy obtained for the classification scheme 2 (D vs. E) for AR order varying from 2 to 20

EEG) and the classification accuracy as shown by the Fig.2

reached 100% for AR model order 11, 12 and 15. It should be

noticed that these results are average results obtained in the case

of 10-fold cross validation technique which shows the power

of AR modeling in descriminating between normal and epilep-

tic EEG episodes. On the other hand, the method is applied

to the scheme 2 (seizure-free EEG vs. seizure EEG) and the

results as shown by the Fig.3 reached its best classification ac-

curacy for the AR model order 10 (Acc=96.54%, Se=96.99%,

Sp=96.1%). This is a good result in comparison to the results

obtained in literature. The table 1 shows a comparison between

results obtained by our method applied to the database of the

university of Bonn [12] and results of 10 researches using the

same database. As we can see in Table 1, the obtained results

for the classification scheme 1 (normal vs. epileptic) reached

100% for the proposed method which is the same accuracy ob-

tained by researchers in [1,2,8,9] and better than two researcher

results that did not reach 100% classification accuracy [5,7]. As

we mentioned earlier the results obtained by our method is the

average over 10 different folds which means different training

sets and testing sets for each classification which means the per-

formance is a strong one since it obtained 100% in the differ-

ent 10 cases. In addition, these classification accuracy values

are obtained for several AR model orders (11, 12, 15) and are

nearlly 100 % for neighboring orders (99.98% for order 13 and

99.97% for order 14 and 99.99% for order 16). In other words

the use of AR modeling of EEG signal with order going from

11 to 16 presents great ability of generalization for the descrim-

ination between normal and epileptic EEG.

On the other hand, results shown in Table 1 for the classifica-

tion scheme 2 (seizure-free vs. seizure) reached 96.54 % for the

proposed method which is better than results of 7 researchers

presented in table 1 [2-5,7, 9-10] and slightly inferior to three

researcher results presented in table 1 [1,6,8]. However, the

methods presented in these 3 papers are costly in term of cal-

culation (Artificial neural network [1], Local binary pattern [6],

Time-frequency representation [8]). This is not the case of our

method where the estimation of AR coefficients are made re-

cursively which make our method more suitable for implemen-

tation. Overall, these results show that the issue of descriminat-

ing between seizure-free periods and seizure periods automati-

cally is not yet addressed. Autoregressive modeling did not get

that power of descrimination such as in the case of classification

scheme 1. The AR modeling can be combined to other methods

to increase the classification accuracy. However, the compu-

tational complexity will increase. Future investigation should

be turned to other modeling methods applied to EEG and the

comparison between their respective descrimination ability and

their respective performances.

4. Conclusion

In this paper we present a method for the classification

of electroencephalogram (EEG) according to two different

schemes where the first one concerns normal against epileptic

EEG signals and the second one concerns seizure-free against

seizure EEG signals. The method is based on AR modeling of

the EEG epochs. The optimal AR model order is determined

for each classification scheme. Results show that the classifier

based on AR modeling for the case of classification scheme 1

is very strong and can be generalized for other EEG datasets.

The classifier obtained good results in the second classification

scheme. However, it is still far from solving the issue of detect-

ing seizures in an epileptic EEG recording. Future investigation

should focus on the comparison with other modeling methods

in term of performance and descrimination ability.



Table 1. Comparison of classification performance with different researchers’ methods for EEG classification schemes

Researchers Year Methods Classes Acc (%)

Djemili et al. [1] 2016 Empirical mode decomposition and artificial neural network A-E 100
D-E 97.7

Kumar et al. [2] 2014 DWT-based Aproximate entropy and artificial neural network A-E 100
D-E 95

Kaya et al. [5] 2014 1D-local binary pattern A-E 99.5
D-E 95.5

Samiee et al. [7] 2015 Rational Discrete Short-Time Fourier Transform A-E 99.8
D-E 95

Gao et al. [8] 2017 Visibility Graph from Adaptive Optimal Kernel Time-Frequency Representation A-E 100
D-E 98

Zhu et al. [9] 2014 Fast weighted horizontal visibility algorithm A-E 100
D-E 93

Nicolaou et al. [3] 2012 Permutation Entropy and Support Vector Machines D-E 82.88

Yuan et al. [4] 2011 Extreme learning machine and nonlinear features D-E 96.5

Sunil Kumar et al. [6] 2015 Local binary patterns D-E 98.33

Joshi et al. [10] 2014 Fractional linear prediction D-E 95.33

Proposed method 2017 Autoregressive modeling and Support vector machine A-E 100
D-E 96.54
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