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Abstract
This paper presents extended forms, equations, and relation-
ships of switching function which are derived out of the theoret-
ical handling of switching algebra and the combinational circuit
design. Two extended forms of switching functions with the
four already existing forms, which will be partly renamed, are
presented. Out of combinational circuit design these extended
forms, the antivalence of disjunctions ADF and the equivalence
of conjunctions ECF , are educed and thereby their algebraic ex-
pressions are set up. For that, conversion rules which enable the
transformation of a disjunction of two variables in equivalence-
operation of the same variables and the transformation of a con-
junction consisting of two variables in antivalence-operation of
the same variables with respect to the extended forms will be lay
down. Furthermore, in the case of orthogonal representation of
these six function forms relations between them result. That
means, by orthogonalization of a corresponding function form
it can be easily transformed in an equivalent another function
form.

1. Introduction

ti t j t̄i t̄ j ti∧ t j ti∨ t j ti⊕ t j ti� t j
0 0 1 1 0 0 0 1
0 1 1 0 0 1 1 0
1 0 0 1 0 1 1 0
1 1 0 0 1 1 0 1

Table 1. Boolean operations of two terms

The mathematical representation of combinational circuit
is done by using of Boolean function respectively of switch-
ing function which is defined as the mapping f (x) : Bn → B.
Bn is the cartesian product B× B× ·· · × B of B as a set
which assigns the values 1 or 0 to each binary vector (x ∈ Bn,
B := {0,1}) [1], [2], [3], [4], [5]. Each entry of the binary vec-
tor x = (x1,x2, ..,xn) represents a Boolean variable which are
either negated xn or not-negated xn. Switching function con-
sists of terms tn which consists of variables xn. These terms
can be assumed either as conjunctions (∧, Eq. (1)), disjunctions
(∨, Eq. (2)), antivalence term (⊕, Eq. (3)) or equivalence term
(�, Eq. (4)). Their corresponding type of gate are characterized
as AND-, OR-, XOR-, XNOR-gate (Tab. 2). Expressions with
a fixed simple form are called standard forms of Boolean func-
tions [1]. Each standard form of Boolean functions, which there
are four in their number [6], [7] consists of connections of ei-
ther conjunctions or disjunctions. The disjunction of at least two
conjunctions is defined as disjunctive form (Tab. 3, No. I) and
is characterized by OR-connection of at least two AND-gates

(Fig. 4 a)) in the combinational circuit. In contrast, the con-
junction of at least two disjunctions is defined as conjunctive
form (Tab. 3, No. II) and is characterized by AND-connection
of at least two OR-gates (Fig. 4 b)). In addition, the antivalence
form is the antivalence connection of at least two conjunctions
(Tab. 3, No. III) and is characterized by XOR-connection of at
least two AND-gates (Fig. 4 c)). The equivalence form is de-
fined by the equivalence connection of at least two disjunctions
(Tab. 3, No. IV) and is characterized by XNOR-connection of
at least two OR-gates (Fig. 4 f)) [8], [9]. The canonical rep-
resentation of these standard forms called as normal form and
denoted as the disjunctive normal form DNF, the conjunctive
normal form CNF, the antivalence normal form ANF and the
equivalence normal form ENF.

Gate Formulae
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Table 2. Six advanced standard forms

2. Extended Standard Forms
The existing four basis forms are deduced from the discrete

mathematics and are assigned to the switching algebra due to
the isomorphism. Conversely, a corresponding algebraic ex-
pression for the switching function can be set up out of their cor-
responding combinational circuit design, which will be used for
mathematical calculation. If the inputs of AND-, OR-, XOR-,
XNOR-gate are alternately combined with AND- and OR-gates
six different combinal circuits are created. Consequently, ex-
tended forms arise [10]. The connection of at least two AND-
gates as input of an OR-gate (Fig. 4 a)) corresponds to the dis-
junctive form DF (Tab. 3, No. I).
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Figure 1. six standard forms as combinational circuit

The connection of OR-gates as input of an OR-gate does not
give a new form. It completely originates to an OR-gate. The
same applies to the AND connection of AND-gates. The con-
nection of OR-gates as input of AND-gate (Fig. 4b)) corre-
sponds to the conjunctive form CF (Tab. 3, No. II). Since
NAND- and NOR-gates can be basically represented as the
negation of AND- and OR-gates these two forms are not treated
in more detail. The antivalence form of conjunctions ACF
(Tab. 3, No. III) appears by XOR connection of AND-gates
(Fig. 4c)) and the antivalence form of disjunctions ADF (Tab. 3,
No. V) appears by XOR connection of OR-gates (Fig. 4d)). By
XNOR operation of AND-gates (Fig. 4e)) appears the equiva-
lence form of conjunctions ECF (Tab. 3, No. VI) and by XNOR
operation of OR-gates (Fig. 4f)) appears the equivalence form
of disjunctions EDF (Tab. 3, No. IV).

Form Formula (m>1) No.

DF fDF (x) =
∨m

i=1 ci(x) I

CF fCF (x) =
∧m

i=1 di(x) II

ACF fACF (x) =
⊕m

i=1 ci(x) III

EDF fEDF (x) =
⊙m

i=1 di(x) IV

ADF fADF (x) =
⊕m

i=1 di(x) V

ECF fECF (x) =
⊙m

i=1 ci(x) VI

Table 3. Six advanced standard forms

3. Conversion Rules
Conversion from one form to another equivalent form al-

lows the simpler mathematical treatment in the respective form.
Those restructurings allow the equivalent modification of oper-
ations. This means, that the reshaped form is equivalent to the
original form. Furthermore, this can also enable the reduction
of the number of gates of a combinational circuit. Reduction of
gates is linked with cost reduction. Rules in respect to the both
extended forms will be given by the following equations. Con-
versions from disjunction to equivalence and from conjunction

to antivalence and vice versa can be made by these following
expressions in Eq. (5) and Eq. (6). The correctness and their
general validity is proved by the use of truth table. The use of
truth table illustrates that the function value of the left side (l.s.)
is equivalent to the right side (r.s.):

Definition 1. The conversion of a disjunction of two variables
in equivalence-operation is obtained by the following transfor-
mation:

xi∨ x j = xi� x j� xix j (5)

Proof.

xi x j xi∨ x j xi� x j xix j xi� x j� xix j
0 0 0 1 0 0
0 1 1 0 0 1
1 0 1 0 0 1
1 1 1 1 1 1

The expression (5) allows the converting of an OR-gate into the
join of an AND- and EXNOR-gates. Conversely, this join of
two gates can be replaced with one gate and vice versa (Fig. 2).
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Figure 2. OR-gate into AND- and EXNOR-gates and vice versa

Definition 2. The conversion of a conjunction of two variables
in antivalence-operation is given by the following expression:

xix j = xi⊕ x j⊕ (xi∨ x j) (6)

Proof.

xi x j xix j xi⊕ x j xi∨ x j xi⊕ x j⊕ (xi∨ x j)
0 0 0 0 0 0
0 1 0 1 1 0
1 0 0 1 1 0
1 1 1 0 1 1

By the use of the expression (6) an AND-gate can be con-
verted into the join of an OR- and EXOR-gates. Conversely,
this join of two gates can be replaced with one gate and vice
versa (Fig. 3).
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Figure 3. AND-gate into OR- and EXOR-gates and vice versa

Both new expressions can also be used for the proof of the cor-
rectness of the relation between the advanced forms when they
possess the characteristic of orthogonality which will be shown
in the following section.



4. Relation of orthogonal Representations
The orthogonal representation of a basis form, which are of

great relevance in solving further Boolean problems, e.g. in the
switching algebra [2], [3], is characterized by terms (conjunc-
tions respectively disjunctions) which are disjointed to one an-
other in pairs. Consequently, these conjunctions have no com-
mon covering after their logical conjunction, (ci(x)∧c j(x) = 0).
In contrast, the logical disjunction of these disjunctions results
in 1, (di(x)∨d j(x) = 1). An orthogonal disjunctive form DForth

is equivalent to the orthogonal antivalence form of conjunctions
ACForth including the same conjunctions, DForth = ACForth

[6], [4]. That means the orthogonalization of a DF facili-
tates the transformation into an orthogonal ACF [11], [1], [4],
[5], [6]. This characteristic simplifies the handling for further
calculations as the Boolean Differential Calculus especially in
Ternary-Vector-List-arithmetic [2], [6]. This relationship can be
explained well with the following definition out of [5], if both
conjunctions ci(x) and c j(x) are orthogonal to each other:

ci(x)∨ c j(x) = ci(x)⊕ c j(x)⊕ (ci(x)∧ c j(x))︸ ︷︷ ︸
=0

(7)

Because of xi⊕0 = xi it appllies:

ci(x)∨ c j(x) = ci(x)⊕ c j(x)

DForth = ACForth

Furthermore, an orthogonal conjunctive form CForth is equiva-
lent to the orthogonal equivalence form of disjunctions EDForth

including the same disjunctions, CForth = EDForth [6]. By the
following definition out of [5] this relationship can be mani-
fested, if both disjunctions di(x) and d j(x) are orthogonal to
each other:

di(x)∧d j(x) = di(x)�d j(x)� (di(x)∨d j(x))︸ ︷︷ ︸
=1

(8)

Because of xi�1 = xi it appllies:

di(x)∧d j(x) = di(x)�d j(x)

CForth = EDForth

Special calculations can be easier solved in another form. For
example, building the complement of DF is a complex pro-
cedure. However, by orthogonalization DF is transformed in
ACForth at which the complement by linking with ⊕ 1 is sub-
sequently determined, it follows ACForth. By a further orthog-
onalization of ACForth the re-transforming back to the disjunc-
tive form is gained. Thus, the complement DF is calculated.
With regard to the orthogonal representation of the new ad-
vanced forms following relations apply:

Definition 3. An orthogonal DF is equivalent to the orthogonal
ACF and equivalent to the complement of the orthogonal ECF,
it applies DForth = ACForth = ECForth:

n∨
i=1

ci(x) =
n⊕

i=1
ci(x) =

n⊙
i=1

ci(x) =
n⊙

i=1
ci(x)�0 (9)

The relation of (9) can be laid down with the following expres-
sion which is deduced out of Eq. (6) if both conjunctions ci(x)
and c j(x) are disjunct.

ci(x)∨ c j(x) = ci(x)� c j(x)� (ci(x)∧ c j(x))︸ ︷︷ ︸
=0

(10)

It follows:

ci(x)∨ c j(x) = ci(x)� c j(x)�0 (11)

The complement of a term can be done by the�-operation of 0,
because it applies: xi�0 = x̄i. This follows:

ci(x)∨ c j(x) = ci(x)� c j(x)

DForth = ECForth

Due to this orthogonal relation combinational circuits of DF
can be transformed in ECF as shown in Fig. 4.
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Figure 4. Transformation due to the orthogonal form

Definition 4. An orthogonal CF is equivalent to the orthogonal
EDF and equivalent to the complement of the orthogonal ADF,
it applies CForth = EDForth = ADForth:

n∧
i=1

di(x) =
n⊙

i=1
di(x) =
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i=1

di(x) =
n⊕

i=1
di(x)⊕1 (12)

The relation of (12) base on the following expression which is
deduced out of Eq. (6) if both disjunctions di(x) and d j(x) are
orthogonal.

di(x)∧d j(x) = di(x)⊕d j(x)⊕ (di(x)∨d j(x))︸ ︷︷ ︸
=1

(13)

It follows:

di(x)∧d j(x) = di(x)⊕d j(x)⊕1 (14)

The complement of a term can be done by the⊕-operation of 1,
because it applies: xi⊕1 = x̄i. This follows:

di(x)∧d j(x) = di(x)⊕d j(x)

CForth = ADForth

Due to this orthogonal relation combinational circuits of KF
can be transformed in ADF as shown in Fig. 5.
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Figure 5. Transformation due to the orthogonal form

Thus, transformations between these six forms can be easily
performed by orthogonalization.



5. Conclusion
Two extended forms of switching function - the antiva-

lence form of disjunctions ADF and the equivalence form of
conjunctions ECF - were investigated in this work. These ex-
tended forms were derived from the representation of combi-
national circuit. Whereby, the other four existing forms were
partly renamed in disjunctive form DF , conjunctive form CF ,
antivalence form of conjunctions ACF and equivalence form
of disjunctions EDF . Novel equations for the conversion of
disjunctions of two variables in equivalence-operation of the
same variables and the conversion of conjunctions of two terms
in antivalence-operation of the same variables derived for the
advanced forms ADF and ECF . Their general validity was
proven by the use of truth table. Furthermore, these equations
for conversion are used for exhibit the correctness of the rela-
tions between the extended six basis forms when they have the
characteristic of orthogonality. Consequently, relations arise
if these six forms are mapped in orthogonal form: an orthog-
onal DF is equivalent to the orthogonal ACF and equivalent
to the complement of the orthogonal ECF . thus, it apllies
DForth = ACForth = ECForth. Additionally, an orthogonal CF
is equivalent to the orthogonal EDF and equivalent to the com-
plement of the orthogonal ADF , CForth = EDForth = ADForth.
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