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Abstract

This paper introduces an active-only meminductor circuit,
uniquely designed to emulate the meminductor without the
need for external capacitors, relying solely on the internal
capacitor of transistors. This innovative approach minimizes
the circuit's footprint on the integrated circuit (IC)
environment. Simulation results conducted in the Cadence
design environment, employing the 0.18 pm CMOS process,
validate the theoretical study's effectiveness.
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1. Introduction

A memristor, a basic passive circuit component that combines
flux and charge, was first conceptualized by Leon Chua [1,2].
Memory circuit components have been extended to capacitive
and inductive systems as a result of the memristor concept's
success [3].

Like memristors, memcapacitors and meminductors have a
memory property, shown by a closed, pinched hysteresis loop
between their two state variables. They also have the added
benefit of storing energy in capacitive and inductive forms,
respectively [4]. These features make them promising for
mimicking biological computation, and they are expected to play
an important role in the development of neuromorphic
computing. Because they can store and process information at the
same time, computers built with these mem-elements could offer
brain-like capabilities with low power consumption [5-7].
However, the absence of solid-state versions of memcapacitors
and meminductors limits their use in real applications. For this
reason, recent research has focused on building emulator circuits
that reproduce the equations and behavior of these devices.

A wide range of meminductor emulator designs reported in the
literature reproduce the characteristic behaviour of these elements
by employing various combinations of analog active building
blocks together with passive components. For example, a
mutator-based implementation utilized two current conveyors,
one buffer, one multiplier, two current sources, and passive
elements [8]. A memristor-less current-controlled version was
realized with three current conveyors, one adder, one multiplier,
and five passive components, while its voltage-controlled
counterpart incorporated three current conveyors, one summer,
one divider, and the same number of passive elements [9].
Another reported design comprised twelve MOSFETSs, one
multiplier, three operational amplifiers, and passive elements
[10]. An alternative topology integrated one buffer, one
multiplier, two operational amplifiers, four current conveyors,
and eight passive elements [11]. Similarly, other mutator-based
emulators were constructed using one multiplier, two operational
amplifiers, two current conveyors, and eight passive elements

[12]. Additional examples include a compact adder—subtractor
configuration with three passive elements [13] and a circuit with
twelve passive elements, one multiplier, and five operational
amplifiers [14]. Gyrator-based approaches have employed six
passive components and two operational amplifiers [15]. Floating
mutator-based designs featured one operational amplifier, four
current conveyors, one varicap diode, and six passive elements
[16], whereas another design used three current conveyors, five
passive components, and one analog multiplier [17]. Hybrid
configurations have been implemented with ten passive
components, one operational amplifier, three current conveyors,
one multiplier, and one operational transconductance amplifier
[18]. A simpler version was also demonstrated using one
capacitor, two operational amplifiers, one memristor, and three
resistors [19].

Nevertheless, these designs generally include external passive
components like capacitors, inductors, and resistors, following
conventional circuit design methods. The reliance on passive
elements presents significant challenges, including increased chip
area and elevated power consumption, which are major concerns
in applications demanding minimal footprint.

The primary objective of this work is to design a meminductor
emulator circuit (MIC) that eliminates the reliance on passive
components, thereby overcoming their associated limitations.
The proposed MIC is realized entirely with active elements, and
its performance is comprehensively evaluated in comparison with
previously published circuits. Extensive simulations were
performed using the XFAB 0.18 pm CMOS process, and an
equivalent model of the circuit was analysed to investigate the
influence of key non-ideal characteristics.

The organization of the paper is as follows: Section 2
introduces the overall topology and theoretical background of the
proposed MIC. Section 3 presents the simulation results, while
Section 4 discusses the impact of non-idealities on circuit
performance. A comparative study with existing designs is given
in Section 5. Finally, Section 6 concludes the paper with a
summary of the findings.

2. Circuit Realization of Proposed MIC

The definition of the meminductor element can be done as
follows:

ou(t) = Lulf, i@drli(t) = Lu(@i(). (D)

It is known as charge-controlled meminductor. Here, input
flux (o) is the integral of the input voltage.

The structure of MIC is illustrated in Fig. 1. The emulator
circuit is realized solely by active elements, without the need for
any external passive components, utilizing the intrinsic
capacitances of the active devices.
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Fig. 1. Proposed meminductor emulator circuit

Accordingly, the characteristic equations of the designed

significant savings in chip area. This is achieved by leveraging
the gate capacitances of MOSFETS operating in the saturation
region. Additionally, the use of MOS transistors with enlarged
gate areas within the circuit design helps to mitigate the effects of
nonlinear junction capacitances. Compared to traditional metal-
plate capacitors, MOS transistors offer a higher capacitance
density, contributing to a minimized chip area [21]. During the
design process of the circuit shown in Fig. 1, particular attention
was given to optimizing transistor sizing: The transistors within
the CCCII were kept as small as possible to enhance high-
frequency performance, while the MOS transistors at the input
stage of the voltage follower were deliberately enlarged to
increase the parasitic capacitance at its input terminal. The
transistor sizes utilized in the CCCII and voltage buffer are shown
in Table 1.

Table 1. Transistor sizes used in the CCCII element
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Fig.2a depicts the CCCII active element, realized through a
conventional translinear architecture. The voltage buffer is
presented in Fig.2b.
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Fig. 2. (a) CMOS-based design of the CCCII [20], (b) Voltage
follower circuit

In this study, a novel meminductor circuit is proposed that
eliminates the need for passive components, resulting in

2.1. Multiplier Subcircuit

This sub-circuit, responsible for the multiplication operation,
can be implemented using the following equation [22]:

(X +Y)2— (X —Y)% = 4XY 9)

As illustrated in Fig. 3, the circuit operates based on two
translinear loops, which enable squaring operations. The first
loop, consisting of transistors M1-M4, realizes the squaring
function (X+Y)?, while the second loop, formed by transistors
M5-MS8, performs the squaring function (X—Y)2.
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Fig. 3. Multiplication circuit block

The mathematical expressions corresponding to the operations

of these two loops, in terms of current values, are given as
follows:

_ Ixly
lout = I
B

(10)



3. Simulation Results

In order to validate the effectiveness of the proposed design,
MIC was implemented using the 0.18 pum XFAB technology with
a supply voltage of 1.2 V. For its proper functionality, the bias
currents IB1, B2, IB3 and IB4 were set to 20 pA, 30 pA, 40 pA,
and 100 pA, respectively. When the proposed MIC was driven by
a sinusoidal input current with a peak amplitude of 1 mA under
biasing currents of 100 pA, 150 pA, and 200 pA, the resulting
characteristics were obtained as shown in Fig. 4. The values of
gm2 and gms are 22 pA/V and 65 pA/V, respectively.
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Fig. 4. Hysteresis behavior corresponding to different biasing
conditions.

To examine the memory characteristics of MIC, a sequence of
current pulses with amplitudes varying between -5 mA and +5
mA and a period of 5 ns was applied to the input of the circuit
illustrated in Fig. 1.
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Fig. 5. Non-volatile behavior of the proposed MIC under a)
incremental and b) decremental configurations.

The corresponding variations in the meminductor’s flux are
depicted in Fig.5.

It can be clearly seen that the flux increases or decreases
depending on the current direction. Furthermore, each subsequent
pulse resumes the flux from its previous state, verifying that the
emulator circuit effectively demonstrates the memory property of
a meminductor. As shown in Fig. 6, when the meminductor
emulator is driven by a 1 mA input current at 70 MHz, 80 MHz,
and 90 MHz, the corresponding current—flux characteristics are
obtained. The proposed circuit operates within the frequency
range of 60-90 MHz. The power consumption of the proposed
circuit is 11.2mW.
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Fig. 6. Pinched hysteresis loops for three different frequencies.

Furthermore, to assess the robustness of the circuit under
diverse operating scenarios, simulations were performed across
multiple temperatures and process corners. As shown in Fig. 7,
the design was analysed at three separate temperature points to
investigate the influence of considerable thermal variations. The
findings demonstrate that the proposed circuit continues to
operate reliably, even under such demanding conditions.

T, -10
T, 27
TT40

Input Flux (Wb),Pn
|

T v T T T ¥ T T T

0
Current, mA

Fig. 7. Hysteresis loops with pinched shape obtained at the
nominal TT process corner for three temperature levels.

4. Non-ldeal Analysis of MIC

Taking into account the frequency-dependent imperfections of
the active components, the non-ideal behavior of MIC is modeled,
as illustrated in Fig.8.

A straightforward analysis of this model produces the
following non-ideal input characteristic [23]:
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Here, r,; denotes the intrinsic resistance at the z-terminal,
while a;(s) and B;(s) represent the frequency-dependent
current and voltage gains of the CCCII, respectively. Moreover,
y1(s) corresponds to the frequency-dependent voltage gain of the
unity-gain voltage buffer. Although each of these non-ideal
parameters can be represented by a single-pole transfer function,
the bandwidth of the non-ideal current transfer function is
considerably smaller compared to those of B;(s) and y;(s).
Thus, Eq. (11) can be simplified by assuming B, (s) and y;(s) as
constants. Accordingly, a;(s) can be expressed using a single-
pole model as follows:

Iin
)]

ai(s) = ao ;= (12)
where «, denotes the low-frequency gain of the CCCII, whose

ideal value equals 1.
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Fig. 8. Non-ideal representation of the proposed meminductor
emulator circuit

Furthermore, if the circuit is designed such that the output
resistance of the CCCI| is sufficiently high to satisfy the condition
(1/r;1 < |jwCpq]) within the operating frequency range, Eg.
(11) can be approximated as:
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After routine analysis of the gyrator, it is obtained the following
equations:
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follows:
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where ak(s) (k=1,2) represent the frequency-dependent current
gains of the CCClls. The terms in the above expression are
obtained by substituting s=jw.

5. Comparison with Existing Circuits in the Literature

To assess the performance of the proposed MIC, it has been
compared with related works reported in the literature. The most
relevant and recent examples are summarized in Table 2. While
the proposed emulator employs a comparable number of active
devices to other designs, it requires no passive components,
which is expected to further reduce the overall chip area.

6. Conclusions

This study introduces a novel active-only Meminductor
Emulator Circuit (MIC) employing elements such as CCCII,
voltage buffer, and multiplier. Notably, it eliminates passive
elements. This design choice results in a significantly reduced
footprint on the integrated circuit (IC), which is expected to
further decrease the chip area, providing a crucial advantage for
practical circuit implementation. Comprehensive simulation
results validate the effectiveness of the proposed meminductor
emulator and demonstrate the memory behavior of the proposed
circuit. The results highlight the circuit's capability to operate at
high frequencies, attributed to the exclusive use of intrinsic gate
capacitors in its design. Furthermore, the study delves into the
investigation of non-ideal effects of the circuit. The proper
functioning of the proposed circuit is demonstrated through
Spectre simulation results conducted in the Cadence design
environment, utilizing the XFAB 0.18um process.
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