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Abstract—In the furniture industry, chipboard is a widely used
material due to its cost-effectiveness and versatility. However,
matching chipboard surfaces with aesthetically and functionally
compatible edge bands remains a critical and challenging task,
often performed manually based on subjective judgment. This
paper presents a novel chipboard edge band matching system that
leverages one-shot learning with Siamese networks to automate
and optimize this process. The system employs CNN-based
Siamese Networks to analyze and quantify the similarity between
chipboards and edge bands based on multiple criteria, including
color, texture, pattern, and shape. A comprehensive similarity
model and a similarity value table are generated, enabling
manufacturers to identify the most compatible edge bands for any
given chipboard. In addition, this study contributes to the field by
introducing an open-source dataset publicly available containing
chipboard and edge band samples. This dataset provides a
valuable resource for researchers exploring industrial material
matching and computer vision applications. The proposed sys-
tem addresses the limitations of existing methods, offering an
efficient, scalable, and objective solution for edge band selection.
By bridging the gap between manual processes and advanced
automation, this work aims to improve production efficiency,
consistency, and aesthetic quality in the furniture manufacturing
industry.

Index Terms—one-shot learning, Siamese networks, chipboard
to edge band matching

I. INTRODUCTION

In the furniture manufacturing industry, chipboards are
widely used as a cost-effective core material. These boards
can be painted and coated in thousands of colors, patterns,
and textures to suit aesthetic preferences and evolving design
trends. However, after covering their broad surfaces, the edges
remain exposed and require matching edge bands for both
functional and aesthetic purposes. Edge bands, typically plastic
strips, are crucial components in modernizing furniture by
concealing cut edges and providing a cohesive finish.

Determining the most suitable edge band for a chipboard
has traditionally relied on subjective visual assessment, which
poses challenges in achieving optimal matches (See Fig. [I).
Factors such as variations in color, texture, pattern, and ma-
terial properties between chipboards and edge bands make
manual matching labor-intensive and prone to inconsistencies
(See Fig. 2). Moreover, differences in production processes,
scaling, and material composition further complicate the task
of achieving alignment between the two.

The manual selection of edge bands for chipboards in the
furniture industry is inefficient, subjective, and prone to errors.
Most of the time, either a new edge band production cannot
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Fig. 2. The same chipboard and edge band pair under different lighting
conditions
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be matched with the target chipboard, thus leads to waste of
time, labor and resources. Or else, a suitable edge band in the
inventory cannot be pinpointed, leads to repeated production
of the same or very similar edge band with an additional cost
and effort.

Key challenges include:

« Visual Inconsistency: Human perception varies signifi-
cantly, making it difficult to achieve consistent matches
for complex criteria like color, texture, and pattern.

o Material and Production Variability: Differences in
materials, production processes, and scaling between
chipboards and edge bands often result in mismatches
that compromise aesthetic quality.

o« Time and Labor Intensity: Relying on manual
inspection is time-consuming and demands skilled labor,
which may not always be available.

o Lack of Automated Solutions: Existing technologies
focus on identifying object types or physical properties
but lack the capability to perform precise compatibility
matching.

To address these issues, a robust, automated system is
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needed that can analyze multiple attributes of chipboards and
edge bands to produce reliable and consistent matches. The
chipboard to edge band matching system proposed in this
paper aims to fill this gap by leveraging machine learning and
similarity modeling to streamline the process.

It is claimed that the proposed system will outperform tradi-
tional manual methods in matching chipboards to edge bands
in terms of accuracy, efficiency, and consistency. Specifically,
the hypothesis is: by employing convolutional neural networks
to analyze visual and material properties, the chipboard to
edge band matching system can reliably identify the most com-
patible edge bands for chipboards, achieving higher precision
and consistency compared to expert opinion based methods.

This paper introduces a novel chipboard to edge band
matching system designed to automate and optimize the pre-
cise pairing of chipboards with their most compatible edge
bands. The proposed system operates by scanning chipboards
and edge bands from various manufacturers, feeding the data
into a Siamese neural network to measure Euclidean distances
and establish compatibility relationships. This process culmi-
nates in the creation of a Similarity Model and a comprehen-
sive Similarity Value Table, which quantify the compatibility
between chipboards and edge bands. When a new chipboard is
introduced, the system evaluates it using the similarity model
and identifies the most suitable edge bands, presenting the
results in a user-friendly digital format.

The key contributions of this work include:

o Automated Matching Process: Development of a system
that eliminates subjective, manual processes by leverag-
ing deep learning and Siamese neural network method-
ologies.

o Similarity Model Creation: This study applies Siamese
neural networks, specifically based on ResNet-50, to
analyze and quantify the similarity between chipboards
and edge bands. The novelty of the contribution lies not
in developing a new Siamese network architecture but
in its application to the industrial problem of chipboard-
edge band matching. The model effectively captures
multiple aesthetic and physical criteria—including color,
texture, pattern, and shape—providing a robust and au-
tomated solution for similarity measurement in this do-
main. Additionally, by leveraging the similarity model,
the system can predict suitable edge bands even for
previously unseen chipboard patterns. This is a signif-
icant practical contribution, as it enables the model to
infer matches for unfamiliar designs based on learned
similarities from known samples. In essence, the system
enhances decision-making by allowing meaningful pre-
dictions about unseen cases using prior knowledge.

o Comprehensive Similarity Metrics: Generation of a
similarity value table that serves as a reference database
for identifying the most compatible edge bands for any
given chipboard.

« Dataset: Publication of a large-scale, open-source dataset
comprising chipboard and edge band samples. This
dataset is a valuable resource for further research on

industrial material matching and computer vision-based
solutions in the furniture industry. All images are acquired
by scanning with a standard scanner. This approach
ensures that additional data can be seamlessly incor-
porated into the database using off-the-shelf scanning
devices. The current data set is obtained with a standard
commercial scanner via the respective product’s standard
software in 300 dpi resolution.

o Practical Use in Furniture Manufacturing: A system
scalable to industry requirements, enabling manufacturers
to achieve consistent and aesthetically appealing results
while saving time and reducing errors.

o Inventory Management: A similar edge-band finder
system with respect to given chipboards make inventory
management mush more efficient as it is common to
produce an existing or very similar edge band multiple
times when it cannot be found at first try. The results
shown in § [V] validates this claim.

o Product Line Robustness: In an industrial production
facility, it is common that the laborers, configuration
and calibration of devices are apt to change. Therefore,
the products might lapse into distorted decorations in
time. Matching the initially approved edge band with
later products guarantee better assessment and helpful for
quality assurance of the facility.

By providing both an innovative solution and an open-access
dataset, this work not only addresses a specific industrial
problem but also fosters further research and innovation in the
field of automated material compatibility determining systems.
This innovative system eliminates the need for subjective
judgment in edge band selection, providing an efficient, and
scalable solution for the furniture industry. By addressing long-
standing technical and practical challenges, the chipboard to
edge band matching system paves the way for enhanced design
coherence and streamlined production processes.

II. LITERATURE REVIEW

Antoniuk et al. applied Siamese networks to recognize drill
wear in manufacturing processes. Their approach involved
comparing images of new and worn drills to assess wear levels,
enhancing predictive maintenance strategies [/1].

Musmeci et al. utilized hybrid Siamese neural networks
for object reidentification in aerial photographs. This method
improved the accuracy of tracking objects across multiple
images, benefiting surveillance and environmental monitoring
(2]

Hindy et al. leveraged Siamese networks to develop a one-
shot intrusion detection model. This approach enabled the
system to identify new types of threats by comparing them
to known attack patterns, improving cyber-security measures
(3.

Zhou et al. proposed a Siamese neural network based few-
shot learning method for anomaly detection in industrial cyber-
physical systems. Their model effectively identified anomalies
with limited data, enhancing system reliability [4].



Kristoffersen et al. introduced SiamTST, a representation
learning framework integrating a Siamese network for multi-
variate time series forecasting in telecommunication networks.
This model improved forecasting accuracy, aiding in network
management [5].

These studies demonstrate the versatility of Siamese net-
works across various industrial applications, including man-
ufacturing, surveillance, medical imaging, cyber-security, and
telecommunications.

Siamese networks have been applied to fabric classification
and matching tasks. For instance, a study utilized Convo-
lutional Neural Networks (CNN) and Siamese networks to
classify and match fabric patterns, aiding in efficient textile
pattern recognition [6].

In the realm of product authentication, Siamese networks
have been employed to detect counterfeit items. A study pro-
posed a Siamese Neural Network that uses two sub-networks
to validate product authenticity, demonstrating effectiveness in
distinguishing genuine products from counterfeit ones [7].

These examples illustrate the versatility of Siamese net-
works in addressing complex industrial challenges, particularly
in areas requiring precise matching and verification.

Siamese networks have been effectively utilized in defect
detection across various industries. For instance, a study pro-
posed a change-aware Siamese network that addresses defect
segmentation through a change detection framework. This
model compares images of defect-free and defective surfaces
to identify anomalies, achieving high-quality pixel-wise defect
detection [8]].

In another application, a real-time, unsupervised learning
Siamese defect detection network was developed based on
knowledge distillation. This approach enables efficient and ac-
curate detection of surface defects in manufacturing processes
without the need for labeled defect data [9].

These examples demonstrate the versatility of Siamese
networks in identifying and segmenting defects, contributing
to improved quality control in industrial settings.

Similarly, recent research in furniture manufacturing has
explored deep learning techniques for automating visual in-
spections. For instance, a study by Chen et al. developed a
deep learning-based system for detecting defects in edge-glued
wooden panels, aiming to improve quality control in furniture

production [[10].

Additionally, computer vision technology has been inte-
grated into furniture manufacturing workshops to achieve
effective and high-quality production modes, as discussed by

Li et al. [T1].

However, limited studies have focused on the specific prob-
lem of chipboard to edge band matching.

This study applies a ResNet50-based Siamese Network with
techniques which suggested by Schroff et al. to enhance
the learning of feature embeddings and achieve high-accuracy
chipboard-edge band matching.
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Fig. 3. A simple chipboard and edge band pair matching is prioritized.
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Fig. 4. A chipboard and edge band pair. Even though a texture is present,
only the color matching is important.

III. DATASET

A comprehensive dataset of chipboard and edge band im-
ages was collected from a global edge band manufacturer.
The dataset includes:

o Chipboard images: 2433 high-resolution images of var-
ious chipboard surfaces, including different colors, tex-
tures, and patterns.

o Edge band images: 3435 high-resolution images of
edge band materials categorized by their corresponding
chipboards.

Domain experts labeled each edge band with its matching
chipboard with the same image names to create a ground-
truth dataset in separate chipboard and edge bands folders. The
dataset consists of two distinct types of chipboards and edge
bands, categorized based on their decoration. The first type is
marked with names starting with “1” (e.g. 1234), which feature
no patterns or very simple patterns where only color matching
is the primary criterion (See Fig. [3). There are 650 chipboards
and 969 edge bands of the first type in total. As illustrated in
Fig. @] while some texture variations may be visible in these
images, they do not significantly impact the matching process.

The second type has names that do not start with “1” (e.g.
4321), which exhibit complex patterns where the complete
decoration (both color and pattern) play a crucial role in
the matching process (See Fig. [3). In these cases, the model
must capture not only color similarity but also intricate design



4166 jpg
Chipboard

4166.jpg
Edge band

P PLI
s
100 100
125 125
150
175 175

200 200

0 50 100 150 200 0 50 100 150 200

Fig. 5. A complex chipboard and edge band pair where both the color and
the pattern are important.

structures to ensure accurate recommendations. There are 1783
chipboards and 2466 edge bands of the second type in total.

To prevent potential confusion between these two cate-
gories—particularly due to texture artifacts in simple designs
that might resemble complex patterns—the dataset is pro-
cessed separately for each category. This ensures that the
model effectively learns the appropriate matching criteria for
both simple color-based bands and complex patterned designs.

IV. METHODOLOGY

The methodology consists of four steps: data cleaning,
image preprocessing, determining the model architecture and
configuration of the model.

A. Data Cleaning

In this phase, incorrect chipboard-edge band matches were
identified and removed. This process was conducted manually
by evaluating all matches in the dataset to ensure accuracy.
Additionally, chipboards that did not have a corresponding
match in the edge band dataset were also excluded. These
steps were critical for maintaining the integrity of the dataset
and ensuring high-quality training data.

B. Image Preprocessing

Image preprocessing consists of pixel-wise intensity nor-
malization and resizing.

« Normalization: Images were normalized to have pixel
intensity values between 0 and 1.

o Resizing: All images were resized to 224 x 224 pixels to
ensure uniformity and compatibility with the architecture
of the model.

C. Model Architecture

The model utilized in this study is a Siamese Network
with ResNet50 and Triplet Loss. To enhance the accuracy
and robustness of the chipboard-edge band matching system,
a Siamese Network was implemented using ResNet50 as the
backbone for feature extraction, coupled with a triplet loss
function and semi-hard batch mining strategy. The components
of the model is described below.

o Base Model: A ResNet50 model pretrained on ImageNet
was employed for feature extraction. The weights of all
layers up to the output of the fifth convolutional block’s
first residual unit layer (conv5-block1-out) were frozen to
preserve the pretrained features. The output of the (conv5-
block1-out) layer was flattened and connected to a series
of fully connected (dense) layers to generate embedding
vectors.

o Trainable Layers: While the majority of the ResNet50
layers were frozen, the final convolutional blocks were
left trainable to allow fine-tuning during training. This
ensures the model adapts to the domain-specific features
of the dataset.

o Triplet Loss [12]: The network was trained using a triplet
loss function, defined as:

L = maz(0, D(a,p) — D(a,n) + @) ()

where: D(a,p) is the embedding distance between the
anchor (chipboard edge; a) and positive (matching edge
band; p) embeddings. D(a,n) is the embedding distance
between the anchor and negative (non-matching edge
band; n) embeddings. « is a margin parameter to enforce
separation between positive and negative pairs. In other
words to minimize the distance between the Anchor and
the Positive, whilst maximizing the distance between the
Anchor and the Negative using semi-hard batch mining
technique applied in Schroff et al.’s study [12].

+ Embedding Vector: The final dense layer produced an
embedding vector for each input image, capturing the key
features needed for similarity comparison.

D. Model Configuration

Two distinct models were developed to classify simple
color-only decorations, and complex (colors and patterns)
decorations, referred to as Model 1 and Model 2, respectively.
As a result, if only color matching is important the model 1
is served, otherwise model 2 is considered.

Both models utilize the flattened output of the conv5-
blockl1-out layer, which is subsequently connected to a fully
connected layer. Model 1 employs dense layers with 512
neurons, while Model 2 utilizes dense layers with 256 neurons.
Following this, each model is connected to an embedding
layer. 4 nodes is used in Model 1 where 32 nodes is used
in Model 2. A batch size of 64 is used for training, and the
ReLU activation function is applied. The models are trained
for 300 epochs in the case of Model 1 and 3000 epochs for
Model 2. The triplet loss function is employed with a margin
parameter o set to 0.1 for Model 1 and 0.3 for Model 2.
Optimization is performed using the Adam optimizer with a
learning rate of 0.0001.

V. RESULTS

The performance of Model 1 and Model 2 are evaluated
separately for clarity. For each model, 10% of the chipboards
are used for test set and the remaining are used for training.
All the relative edge bands are used for retrieval purpose.



TABLE I
THE MODELS RETRIEVAL RESULTS

k Model 1 Model 2
5 50% 27%
20 77% 54%
50 84% 69%
100 95% 85%
200 100% 95%
250 100% 96%
300 100% 99%

As a result, for Model 1, 969 edge bands are evaluated
for a matching chipboard, while 2466 edge bands are used
for Model 2. The performance of the proposed models was
evaluated using a precision-based metric. Specifically, for a
given chipboard, the system ranks the top k£ most relevant edge
band recommendations, and the expected band should ideally
be included within these top k£ suggestions. This metric, which
is known as Top-k Accuracy, reflects the model’s ability to
retrieve the correct match while minimizing manual effort in
the selection process. Note that the problem is formulated as
a retrieval problem. Complementary results such as Fl-score
or recall cannot provide valuable insight when the problem is
formulated as a classification problem as there exist thousands
of classes.

Two sets of experiments were conducted separately for
the two models. The first column of Table [I| presents the
results for Model 1, which is trained on simple bands where
color similarity is the primary matching criterion. The second
column of the table reports the results for Model 2, which is
designed to handle complex decorations, incorporating both
color and pattern similarity.

As observed in the results, Model 1 achieves higher pre-
cision than Model 2, which is expected given its focus on
simpler bands with fewer distinguishing features beyond color.
In contrast, Model 2 operates on more intricate patterns, mak-
ing precise recommendations more challenging. Both models
demonstrate strong retrieval performance. For the correct edge
band being included 99% of the time, Model 2 requires the
top 300 recommendations. Even though this many edge bands
might seem large at first, this significantly reduces the manual
search workload by approximately 91%, as the laborer only
needs to inspect 300 options instead of manually reviewing
3,435 possible bands.

Note that, oftentimes the experts consider the provided
candidates as good replacements and sometimes surprised to
have a competing match to their labeled offerings. Qualitative
observations suggest that in some cases, the models provide
even more suitable recommendations than the actual target
bands, indicating that the system can refine the selection
process beyond traditional human decision-making. For ex-
ample in Figure [/| the edge band 2669 is closer to the
chipboard than the targeted 720 edge band. In Figure [6
although the targeted edge band is not retrieved in the top
5 best bands, the recommended edge bands are also quite

suitable matches for the 1366 chipboard. This implies that
the models’ performance may be better than what is strictly
reflected in the reported precision scores. By integrating this
recommendation system into the workflow, workers can reduce
manual errors, improve efficiency, and achieve higher-quality
edge band matching results.

Another benefit of the proposed system is better inventory
management. The manual edge band selection process requires
an expert eye to go through thousands of candidates. Apart
from being error-prone, even this simple search could take up
to a few hours; therefore, it limits the production facility or
the distributor to handle a few target chipboard designs per
day. Moreover, if an existing matching edge band cannot be
identified at that time, either a lengthy production pipeline
must be initiated in vain, or an unnecessary order is placed to
be delivered after some weeks.

Another utilization of the proposed system is preserving the
uniformity of the product batches in time. A slight deviation
might not be visible during continuous production. However,
the proposed system could easily produce deviation scores
from the approved initial sample.

VI. CONCLUSION

This study introduced a Siamese network-based approach
for chipboard to edge band matching. The proposed model is
an ensemble Siamese network-based approach that encompass
both simple color-based bands and more complex, patterned
designs. The proposed model demonstrated strong retrieval
performance, with the correct band appearing in the top 300
recommendations 99% of the time, leading to an estimated
91% reduction in manual workload.

Beyond the reported precision scores, qualitative analysis
suggests that the models can provide even better recommenda-
tions than the original target bands, highlighting their potential
to enhance decision-making in industrial settings. By inte-
grating this automated system, manufacturers can significantly
reduce human errors, improve efficiency, and streamline the
edge band selection process.
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